Program slicing: a survey

Härmel Nestra

Institute of Computer Science
University of Tartu

e-mail: nestra@math.ut.ee
Introduction
1 Introduction

1.1 Definition

Definition
In informal terms, a slicing criterion is a list of pairs of program points and memory locations (e.g. variables).

- Or equivalently, it is a function from program points to memory location sets.

- A slice of a program \(P \) w.r.t a criterion \(\gamma \) is a subset of \(P \) consisting of precisely those statements which are relevant to \(\gamma \).

- Program slicing is an action with the aim of finding slices.
Three-dimensional classification

- **Executable or not?**
 - In *executable* slicing, a subset of a program is required to be executable.
 - If we are not speaking of executable slicing, finding a subset means just giving a rule saying which elementary code units (whatever they are…) are thrown out.

- **Backward or forward?**
 - In *backward* slicing, we are interested in the statements of the program which can influence the values at points of the criterion.
 - In *forward* slicing, we are interested in the statements of the program which can be influenced by the values at points of the criterion.

- **Static or dynamic?**
 - *Static* slicing is performed using no run-time information.
 - *Dynamic* slicing uses information about user inputs etc.
 - Using run-time information keeps the slices smaller.
Kinds of slicing

- So we have 8 different kinds of slicing.
- **Executable backward static** slicing occurred first in research history.
Motivation
Applications of slicing

- Parallelizing a sequential program.
- Debugging.
 - Slicing some parts away helps us to localize bugs in a large program.
 - Finding the forward slice of an erroneous command can give ideas how to correct the program.
 - Finding dead code (probably come into being due to a bug).
- Testing, maintenance.
 - Only parts of the software affected by new modifications have to be tested.
More closely on backward static slicing
2 More closely on backward static slicing

2.1 The first approach
More rigorously specification

A subset Q of a program P is a slice of P w.r.t. criterion γ if, for any initial state, programs P and Q compute the same values at the points of γ.
More closely on backward static slicing

2.1 The first approach

Example program

Consider the following toy program:
```
b = 1;
c = 2;
d = 3;
a = d;
a = b + c;
d = b + d;
b++;
a = b + c;
printf(a);
```
A slicing criterion

We can take the following to be its control flow graph:

Consider the slicing criterion \(\{(9, a)\} \).
2 More closely on backward static slicing

2.1 The first approach

The slice

\[
\begin{align*}
 b &= 1; & \Rightarrow & \quad b &= 1; \\
 c &= 2; & \quad c &= 2; \\
 d &= 3; \\
 a &= d; \\
 a &= b + c; \\
 d &= b + d; \\
 b++; & \quad b++; \\
 a &= b + c; & \quad a &= b + c; \\
 \text{printf}(a); \\
\end{align*}
\]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 1

0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ {a}
2 More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 2

0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9

\emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \emptyset \{a\} \{a\}

b=1 \quad c=2 \quad d=3 \quad a=d \quad a=b+c \quad d=b+d \quad b++ \quad a=b+c \quad \text{printf}(a)
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 3

0 \(b=1 \) 1 \(c=2 \) 2 \(d=3 \) 3 \(a=d \) 4 \(a=b+c \) 5 \(d=b+d \) 6 \(b++ \) 7 \(a=b+c \) 8 9
\(\emptyset \) \(\{b,c\} \) \(\{a\} \) \(\{a\} \)
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 4

```
0  b=1
1  c=2
d=3
a=d
5  a=b+c
6  d=b+c
7  b++
8  a=b+c
9  printf(a)

∅  ∅  ∅  ∅  ∅  ∅  {b,c}  {b,c}  {a}  {a}
```
2 More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 5

\[
\begin{align*}
0 & \rightarrow 1 & b=1 \\
1 & \rightarrow 2 & c=2 \\
2 & \rightarrow 3 & d=3 \\
3 & \rightarrow 4 & a=d \\
4 & \rightarrow 5 & a=b+c \\
5 & \rightarrow 6 & d=b+d \\
6 & \rightarrow 7 & b++ \\
7 & \rightarrow 8 & a=b+c \\
8 & \rightarrow 9 & \text{printf}(a)
\end{align*}
\]

\[
\emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad \{b, c\} \quad \{b, c\} \quad \{b, c\} \quad \{a\} \quad \{a\}
\]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 6

<table>
<thead>
<tr>
<th>Node</th>
<th>Expression</th>
<th>Relevant Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>b = 1</td>
<td>∅</td>
</tr>
<tr>
<td>1</td>
<td>c = 2</td>
<td>∅</td>
</tr>
<tr>
<td>2</td>
<td>d = 3</td>
<td>∅</td>
</tr>
<tr>
<td>3</td>
<td>a = d</td>
<td>∅</td>
</tr>
<tr>
<td>4</td>
<td>a = b + c</td>
<td>{b, c}</td>
</tr>
<tr>
<td>5</td>
<td>d = b + d</td>
<td>{b, c}</td>
</tr>
<tr>
<td>6</td>
<td>b++</td>
<td>{b, c}</td>
</tr>
<tr>
<td>7</td>
<td>a = b + c</td>
<td>{a}</td>
</tr>
<tr>
<td>8</td>
<td>printf(a)</td>
<td>∅</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>{a}</td>
</tr>
</tbody>
</table>
2 More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 7

```
b=1  c=2  d=3  a=d  a=b+c  d=b+d  b++  printf(a)
∅  ∅  ∅  {b,c}  {b,c}  {b,c}  {b,c}  {b,c}  {a}  {a}
```

0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9
2 More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 8

\[
\begin{align*}
0 & \rightarrow 1 & 2 & \rightarrow 3 & 4 & \rightarrow 5 & 6 & \rightarrow 7 & 8 & \rightarrow 9 \\
\emptyset & \emptyset & \{b, c\} & \{a\} & \{a\}
\end{align*}
\]
2 More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 9

\[
\begin{align*}
0 & \quad b=1 \\
1 & \quad c=2 \\
2 & \quad d=3 \\
3 & \quad a=d \\
4 & \quad a=b+c \\
5 & \quad d=b+d \\
6 & \quad b++ \\
7 & \quad a=b+c \\
8 & \quad printf(a) \\
9 & \quad a \\
\end{align*}
\]

\[\emptyset \quad \{b\} \quad \{b, c\} \quad \{a\} \quad \{a\} \]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 10

\[
\begin{align*}
0 & \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \\
\emptyset & \rightarrow \{b\} \rightarrow \{b, c\} \rightarrow \{b, c\} \rightarrow \{b, c\} \rightarrow \{b, c\} \rightarrow \{a\} \rightarrow \{a\}
\end{align*}
\]
Obtaining the slice: the first approximation

- Take the set of edges where a location relevant at its end vertex is updated. The desired slice corresponds to this set.
Next example

Consider the following program:
```
b = 1;
c = 2;
d = 3;
a = d;
if (a) {
    d = b + d;
    c = b + d;
} else {
    b++;
    d = b + 1;
}
a = b + c;
printf(a);
```
Specifying the task

Take the control flow graph as follows:

Consider the slicing criterion

\{(11, a)\}.
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 1

\[b = 1\]
\[c = 2\]
\[d = 3\]
\[a = d\]
\[d = b + d\]
\[c = b + d\]
\[a = b + c\]
\[printf(a)\]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 2

```
0  b=1  c=2  d=3  a=d
∅   ∅   ∅   ∅  

1
∅   

2  d=b+d
∅   ∅   ∅   ∅  

3  a=d
∅   ∅   ∅   ∅  

4  not_a
∅   ∅   ∅   ∅  

5  d=b+d
∅   ∅   ∅   ∅  

6  cnb+d
∅   ∅   ∅   ∅  

7  b++
∅   ∅   ∅   ∅  

8  a=b+d
∅   ∅   ∅   ∅  

9  a=b+c
∅   ∅   ∅   ∅  

10  printf(a)
∅   ∅   ∅   ∅  

11  {a}  {a}
```
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 3

```
0 b=1 c=2 d=3 a=d
1 ∅ ∅ ∅ ∅
2 ∅ ∅ ∅ ∅
3 ∅ ∅ ∅ ∅
4 ∅ ∅ ∅ ∅
5 d=b+d cn+b=d
6 ∅ ∅ ∅ ∅
7 ∅ ∅ ∅ ∅
8 ∅ ∅ ∅ ∅
9 a=b+c
10 ∅ ∅ ∅ ∅
11 ∅ ∅ ∅ ∅

printf(a)
```

```
b
```
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 4

```
b=1
c=2
d=3
a=d
```

```
d=d+b+d
```

```
c=b+d
```

```
b++
d=b+1
```

```
a=b+c
printf(a)
```
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 5
2.1 The first approach

Relevant Sets analysis 6

\[
\begin{align*}
&b=1 \\
&c=2 \\
&d=3 \\
&a=d \\
&s \\
&d=b+d \\
&c=b+d \\
&a \\
&b++ \\
&d=b+1 \\
&a=b+c \\
&\text{printf}(a)
\end{align*}
\]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 7

\[
\begin{align*}
0 & \rightarrow 1 & b = 1 \\
1 & \rightarrow 2 & c = 2 \\
2 & \rightarrow 3 & d = 3 \\
3 & \rightarrow 4 & a = d \\
4 & \rightarrow 7 & b++ \\
7 & \rightarrow 8 & \text{not-a} \\
8 & \rightarrow 9 & a = b + c \\
9 & \rightarrow 10 & \text{printf}(a) \\
10 & \rightarrow 11 & \text{printf}(a)
\end{align*}
\]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 8

```
318
344
a=d

318
d=b+1

a=b+c

printf(a)
```
2 More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 9

\[
\begin{align*}
\text{b=1} & \quad c=2 \quad d=3 \\
\emptyset & \quad \emptyset \quad \{b, c, d\} \\
\text{not} & \quad \text{not} \quad \{b, c, d\} \\
\text{printf(a)} & \quad \text{printf(a)} \\
\end{align*}
\]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 10

```plaintext
b=1
c=2
d=3
a=d
d=b+d
c=b+d

---

a=b+c
printf(a)
```
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis 11

\(b = 1 \) \\
\(c = 2 \) \\
\(d = 3 \) \\
\(a = d \)

\(d = b + d \) \\
\(c = b + d \)

\(a = b + c \)

\(\text{printf}(a) \)
2 More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis

\[
b = 1
\]
\[
c = 2
\]
\[
d = 3
\]
\[
a = d
\]
\[
d = b + d
\]
\[
c = b + d
\]
\[
printf(a)
\]

\[
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11
\]

\[
\emptyset \rightarrow \{b\} \rightarrow \{b, c\} \rightarrow \{b, c, d\} \rightarrow \text{not_a} \rightarrow \{b, c, d\} \rightarrow \{b, c\} \rightarrow \{b, c\} \rightarrow \{a\} \rightarrow \{a\} \rightarrow \text{printf(a)}
\]
2 More closely on backward static slicing

2.1 The first approach

Slice?

- If a control statement contains a line of the slice, it is also taken into the slice.

```c
b = 1;        \Rightarrow b = 1;
c = 2;        c = 2;
d = 3;        d = 3;
a = d;
if (a) {
    d = b + d;
    c = b + d;
} else {
    b++;
    d = b + 1;
}
a = b + c;
printf(a);
```
Control statements are specific

If a control statement is in the slice, all the variables of its test expression must be declared relevant at that point!
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis continued 1
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis continued 2

\[
\begin{align*}
b &= 1 \\
c &= 2 \\
d &= 3 \\
a &= d \\
d &= b + d \\
c &= b + d \\
printf(a)
\end{align*}
\]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis continued 3

\[\begin{align*}
0 & \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \\
\emptyset & \rightarrow \{b\} \rightarrow \{b, c\} \rightarrow \{b, c, d\} \\
& \rightarrow \{a, b, c, d\} \rightarrow \{b, c\} \\
& \rightarrow \{b, c\} \\
& \rightarrow \{a\} \rightarrow \{a\} \\
5 & \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \\
& \rightarrow \{b, d\} \rightarrow \{b, d\} \\
& \rightarrow \{b, c\} \\
6 & \rightarrow 7 \rightarrow 8 \rightarrow 9 \\
& \rightarrow \{b, d\} \rightarrow \{b, d\} \\
& \rightarrow \{b, c\} \\
7 & \rightarrow 8 \rightarrow 9 \\
& \rightarrow \{b, c\} \\
& \rightarrow \{b, c\} \\
8 & \rightarrow 9 \\
& \rightarrow \{b, c\} \\
9 & \rightarrow 10 \rightarrow 11 \\
& \rightarrow \{a\} \\
10 & \rightarrow 11 \\
& \rightarrow \{a\} \\
11 & \\
& \end{align*} \]

\[a = d \]

\[d = b + d \]

\[c = b + d \]

\[a = b + c \]

\[\text{printf}(a) \]
2.1 The first approach

The right slice

\[
\begin{align*}
 & b = 1; \\
 & c = 2; \\
 & d = 3; \\
 & a = d; \\
 & \text{if (a) } \\
 & \quad d = b + d; \\
 & \quad c = b + d; \\
 & \quad } \\
 & \text{else } \\
 & \quad b++; \\
 & \quad d = b + 1; \\
 & \quad } \\
 & a = b + c; \\
 \end{align*}
\]

\[
\begin{align*}
 & b = 1; \\
 & c = 2; \\
 & d = 3; \\
 & a = d; \\
 & \text{if (a) } \\
 & \quad d = b + d; \\
 & \quad c = b + d; \\
 & \quad } \\
 & \text{else } \\
 & \quad b++; \\
 & \quad d = b + 1; \\
 & \quad } \\
 & a = b + c; \\
 \end{align*}
\]
Control dependence

Let G be a directed graph with marked end-vertices and u, v any vertices.

- Call v **post-dominating** u iff any path from u to any end-vertex uses v.
- Call v **control dependent** on u iff both of the following hold:
 a. v does not post-dominate u;
 b. there exists a successor w of u such that v post-dominates w.
More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 1

```
0 b=1 1 c=2 2 d=3 3 a=d 4 not a 5 d=b+d 6 c=b+d 7 b++ 8 d=b+1 9 a=b+8 10 11 printf(a)
```
More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 2

```
b=1
c=2
d=3
a=d
a

b++
d=b+1

not a
d=b+d
c=b+d

printf(a)
```
More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 3

```
b = 1
a = d
b++
da = b + 1
printf(a)
```
2 More closely on backward static slicing
2.1 The first approach

Post-dominance analysis 4

```
b=1
c=2
d=3
a=d
```
More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 5

```
a = d
b = 1
b++
c = 2
d = 3
a = d
d = b + d
c = b + d
printf(a)
```
More closely on backward static slicing

2.1 The first approach

Post-dominance analysis

```
b=1
c=2
d=3
a=d

\[ a = b + d \]
\[ c = b + d \]
\[ a = b + c \]

printf(a)
```

Diagram of the post-dominance analysis.
2 More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 7

```
0 -> 1 -> 2 -> 3 -> 4
^     |     |     |
    a=d  c=2  d=3  b=1
        ^       ^
        nota   b++
```

```
5 -> 6 -> 7 -> 8 -> 9 -> 10 -> 11
^     |     |     |     |     |
    d=b+d  c=b+d  b++  a=d  a=b+c  printf(a)
```

Nodes: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

Arcs: 0->1, 1->2, 2->3, 3->4, 4->5, 5->6, 6->7, 7->8, 8->9, 9->10, 10->11

Labels: b=1, c=2, d=3, a=d, d=b+d, c=b+d, b++, a=d, a=b+c, printf(a)
Post-dominance analysis 8
2 More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 9

![Diagram showing post-dominance analysis]

\[b = 1 \quad c = 2 \quad d = 3 \quad a = d \]

\[d = b + d \quad c = b + d \]

\[a = b + c \]

\[\text{printf}(a) \]
More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 10
More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 11

\[
\begin{align*}
&b = 1 & &c = 2 & &d = 3 & &a = d \\
&\text{not a} & &s & &d = b + d & &c b + d \\
&\text{printf}(a) & &\{6, 9, 10, 11\} & &\{6, 10, 11\} & &\{9, 10, 11\} & &\{11\} & &\emptyset \\
\end{align*}
\]
More closely on backward static slicing

2.1 The first approach

Post-dominance analysis 12
Immediate post-dominators

- The post-dominance relation is an order.
- The least w.r.t. the post-dominance order element among the strict post-dominators of \(u \) is called the **immediate post-dominator** of \(u \).
- Every vertex except the end vertices has the immediate post-dominator.
More closely on backward static slicing

2.1 The first approach

Immediate post-dominators and control dependence 1

```
b=1
c=2
d=3
a=d
d=b+d
c=b+d
a=b+c
printf(a)
```
More closely on backward static slicing

2.1 The first approach

Immediate post-dominators and control dependence 2
2 More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 1
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 2

\[
\begin{align*}
\text{b} &= 1 \\
\text{c} &= 2 \\
\text{d} &= 3 \\
\text{a} &= \text{d} \\
\text{d} &= \text{b} + \text{d} \\
\text{c} &= \text{b} + \text{d} \\
\text{a} &= \text{b} + \text{c} \\
\text{printf(a)}
\end{align*}
\]
Relevant Sets analysis on CFG + CD 3
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 4
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 5
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 6

```
0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → 10 → 11

b=1  c=2  d=3  a=d  d=b+d  c=b+d  b++
{b,c}  {b,c}  {b}  no  yes  no  yes  no  no  no  no
```

```
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 7
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 8
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 9

```
0 b=1 1 c=2 2 d=3 3 a=d 4
 | | | | |
 |
5 d=b+d
 |
6 cnb+d {b, c}
 yes
7 b++
 yes
 |
8 d=b+1 {b, c}
 yes
 |
9 a=b+c {a, b, c}
 yes
10 printf(a)
 |
11 (a) (a) (a)
 no no no
```

\[ a = d \]
\[ b = b + d \]
\[ c = b + d \]
\[ a = b + c \]
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 10
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 11
More closely on backward static slicing

2.1 The first approach

Relevant Sets analysis on CFG + CD 12

![Diagram showing relevant sets analysis on control flow graph (CFG) with CD 12. The diagram includes nodes labeled with assignments and set membership for variables b, c, d, and a. The arrows indicate the flow of control and the decision conditions for variable membership in sets.]
Another approach
New concepts

- **Reaching Definitions** analysis computes for every program point, at which program points the initialized variables can be last updated.

- A vertex $v$ of control flow graph is said to be data dependent on a vertex $u$ iff $v$ can read a location which can be last updated at $u$. 
2 More closely on backward static slicing
2.2 Another approach

Plan

- Perform Reaching Definitions.
- Compute control dependences.
- Compute data dependences of the program.
- Compute criterion-specific data dependences.
  - Any pair \((p, x) \in \gamma\) is treated as using variable \(x\) at \(p\). This generally adds some new dependences.
- The slice can be obtained as the set of vertices reachable from points mentioned by the criterion in the graph whose edges are the reversed data and control dependence ones.
Reaching Definitions analysis on the last example 1
More closely on backward static slicing

2.2 Another approach

Reaching Definitions analysis on the last example 2
Reaching Definitions analysis on the last example 3

```
0 b=1 1 c=2 2 d=3 3 a=d 4 s 5 d=b+d 6 c=b+d 7 not a 8 b++ 9 d=b+1 10 a=b+c 11 printf(a)
```

More closely on backward static slicing

2.2 Another approach
More closely on backward static slicing

2.2 Another approach

Reaching Definitions analysis on the last example 4

```
b=1
c=2
d=3
a=d
d=b+d
```

```
\text{b++}
d=b+1
a=b+c
```

\text{printf(a)}
More closely on backward static slicing

2.2 Another approach

Reaching Definitions analysis on the last example 5
Reaching Definitions analysis on the last example 6
2. More closely on backward static slicing

2.2 Another approach

Reaching Definitions analysis on the last example 7
Reaching Definitions analysis on the last example 8
More closely on backward static slicing

2.2 Another approach

Reaching Definitions analysis on the last example 9
More closely on backward static slicing

2.2 Another approach

Reaching Definitions analysis on the last example

```
0 → 1 → 2 → 3 → 4
b = 1 c = 2 d = 3 a = d

5 → 6 → 7 → 8 → 9 → 10 → 11
s = 2 d = b + d c = b + d printf(a)
```

```latex
\begin{align*}
0 & \rightarrow 1 & b = 1 & \rightarrow [0] \\
1 & \rightarrow 2 & c = 2 & \rightarrow [1] \\
2 & \rightarrow 3 & d = 3 & \rightarrow [2] \\
3 & \rightarrow 4 & a = d & \rightarrow [3] \\
4 & \rightarrow 5 & s = 2 & \\
5 & \rightarrow 6 & d = b + d & \rightarrow [3] \\
6 & \rightarrow 7 & c = b + d & \rightarrow [3] \\
7 & \rightarrow 8 & printf(a) & \rightarrow [3] \\
8 & \rightarrow 9 & b \rightarrow [0] & \\
9 & \rightarrow 10 & c \rightarrow [1] & \\
10 & \rightarrow 11 & d \rightarrow [2] & \\
11 & & & \\
\end{align*}
```
Reaching Definitions analysis on the last example 11
More closely on backward static slicing

2.2 Another approach

Reaching Definitions analysis on the last example 12

```
0 ——— b=1 1 ——— c=2 2 ——— d=3 3 ——— a=d 4 ———
 | | | |
 v v v v
 b (0) b (0) b (0) b (0)
 c (1) c (1) c (1) c (1)
 d (2) d (2) d (2) d (2)

5 ——— d = b + d 6 ———
 v
5 ——— s

7 ——— a → {3} 8 ——— a → {3}
 v
7 ——— b → {0} 8 ——— b → {0}
 v
7 ——— c → {1} 8 ——— c → {1}
 v
7 ——— d → {2} 8 ——— d → {2}
 v

9 ——— a → {3} 10 ——— a → {3}
 v
9 ——— b → {0} 10 ——— b → {0}
 v
9 ——— c → {1} 10 ——— c → {1}
 v
9 ——— d → {2} 10 ——— d → {2}
 v

11 ——— printf(a)
```
Data and control dependences

Thin arrows denote data dependences, bold arrows denote control dependences.
Data and control dependences

Thin arrows denote data dependences, bold arrows denote control dependences.
Data and control dependences

Thin arrows denote data dependences, bold arrows denote control dependences.
Conclusion
Comparision

- Slicing via Relevant Sets analysis depends wholly on the criterion.
- Reaching Definitions does not depend on the criterion. Using the second approach, only the last cheap steps use the criterion.
  - So if one has to slice a program w.r.t. many criterions, the second approach is better!
Further

- This was intraprocedural slicing only…