Type systems equivalent to data-flow analyses for imperative languages

Peeter Laudaa, *, Tarmo Uustalub, Varmo Venea, b

aDepartment of Computer Science, University of Tartu, J. Liivi 2, EE-50409 Tartu, Estonia
bInstitute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, EE-12618 Tallinn, Estonia

Received 13 January 2006; accepted 17 March 2006

Abstract

We show that a large class of data-flow analyses for imperative languages are describable as type systems in the following technical sense: possible results of an analysis can be described in a language of types so that a program checks with a type if and only if this type is a supertype of the result of applying the analysis. Type-checking is easy with the help of a certificate that records the “eureka”-bits of a typing derivation. Certificate-assisted type-checking amounts to a form of lightweight analysis à la Rose. For secure information flow, we obtain a type system that is considerably more precise than that of Volpano et al., but not more sophisticated. Importantly, our type systems are compositional.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Data-flow analyses; Secure information flow; Type systems

1. Introduction

Both program analyses and type systems can be used to infer and state properties of programs. Clearly, program analyses are more algorithmic by their nature while type systems are more declarative. In particular, although program analyses are convenient tools for inferring properties of programs, type systems have advantages over them, when it comes to communicating the properties established.

Given these considerations, it is most natural to wish to relate program analyses and type systems. This idea has been around for quite some time. In particular, Cousot has shown that both are instances of abstract interpretation \cite{Cousot77} and there are several works describing how to derive type systems from program analysis definitions \cite{Cousot97, Cousot99}. But the project has not been carried out really satisfactorily for imperative languages. The main obstacle seems to have been a confusion over what a type system for an imperative language should look like.

In this paper, we tackle exactly the problem of deriving type systems from analyses for imperative languages (more specifically, data-flow analyses) and solve it based on a simple philosophical idea of what types are all about. Our position is that a type must always be an abstraction of the denotation of a program, be it then an abstraction of its denotation with respect to the standard semantics of language or some non-standard semantics. And a type system

* An extended abstract of this paper appeared in the informal proceedings of the APPSEM ’05 workshop.

* Corresponding author.

E-mail addresses: peeter.l@ut.ee (P. Laud), tarmo@cs.ioc.ee (T. Uustalu), varmo@cs.ut.ee (V. Vene).
must be a compositional way of ascribing types to programs such that type-checking is “easy” (and type inference “not too hard”, preferably). Since imperative programs denote transformations of (standard or non-standard) states—a state before a run of the program is sent to the state after it—, types for imperative programs must be implications between abstractions of (standard or non-standard) states, i.e., pairs of abstract states. (Compare this to Hoare logic, which is based on one instance of this idea: “types” of programs are implications between predicates on states in the sense that, for any legal prestate–poststate pair, if the prestate satisfies the antecedent predicate, then the poststate satisfies the succedent predicate). We show that this quite basic idea leads to very simple type systems with smooth meta-theory which, we hope, will find applications in the area of certified software.

Our approach is in strong contrast to works where authors have chosen types for imperative programs to be single abstract states, e.g., the classic work by Volpano et al. on secure information flow [22], where the type of a program is an assignment of invariant security classes to its variables. They may have drawn their intuitions from the fact that, in many languages, the data-types of the variables of a program are required to stay invariant during its runs. But data-types and languages where variables cannot migrate from one data-type to another are more of an exception than a rule in the big picture of imperative languages and notions of abstract state. Most kinds of abstract states or types (such as which variables are live etc.) do change during runs. Because of the better notion of type, our type systems allow us to infer and state sharper properties of programs than type systems based on the idea that a type is a single abstract state.

More technically, our achievement and contribution in this paper is the following. We introduce a framework for defining data-flow analyses that caters, besides the most classical data-flow analyses such as available expressions or very busy expressions, also abstract interpretation inspired analyses such as constant propagation, and analyses based on non-standard semantics of conditional constructs such as secure information flow. We then introduce a method for deriving a type system from an analysis defined in the framework and show that the type system obtained is always equivalent to the analysis. What the method does is very simple: in fact we only introduce two schematic type systems, one for all forward may-analyses and one for all backward must-analyses definable in the framework. This does not restrict generality, since any forward must-analysis (resp. backward may-analysis) is trivially turned into a forward may-analysis (resp. backward must-analysis) by reversing the partial order of the abstract state space of the analysis. A type system for a concrete analysis is obtained by mechanical instantiation of the appropriate schematic type system with the definition of the analysis. We look at a number of example analyses, most prominently secure information flow. We also discuss extraction of certificates (essential information) from typing derivations and lightweight, certificate-assisted type-checking that should be useful in the venture of certified code.

The paper is structured as follows. In Section 2, we introduce our framework for defining data-flow analyses. In Section 3, we present our method of deriving a type system from the definition of an analysis. In Section 4, we substantiate our development with examples. In Section 5, we discuss certificate generation from type derivations and certificate-assisted type-checking. Section 6 overviews the related work and Section 7 presents our conclusions.

2. A framework for data-flow analyses

We consider a simple imperative programming language (While-language). Its statements (or, programs) are given by the following grammar:

\[P ::= p \mid P_1 \mid P_2 \mid \text{if } b \text{ then } P_1 \text{ else } P_2 \mid \text{while } b \text{ do } P_1. \]

Here \(p \) is a primitive statement and \(b \) a Boolean expression (whose evaluation does not change the state of the program), similar to [13]. Primitive statements may be assignments or skip-statements; their details do not concern us here. Let \(\text{Stm} \) be the set of all programs.

Data-flow analyses work by calculating an assignment of abstract states to the edges of a control-flow graph. Depending on whether the analysis is forward or backward, either the direct or inverse control-flow graph of a given program is used and the calculation happens by propagating abstract states across the nodes of the graph in the appropriate direction.

We consider two types of data-flow analyses: forward may-analyses (based on least fixedpoint computation on the direct control-flow graph of a program) and backward must-analyses (based on greatest fixedpoint computation on the inverse control-flow diagram). The reasons to choose these two kinds as primitive will be explained in the next section.
Forward must-analyses and backward may-analyses are variants obtained by reversing the partial order on the abstract state space.

Both types of analyses proceed from an abstract state space \((D, \sqsubseteq)\) that is a partial order. For forward may-analyses, we require furthermore that \((D, \sqsubseteq)\) is an \(\omega\)-complete upper semilattice, i.e.

- any two elements \(d, d'\) have a least upper bound \(d \sqcup d'\);
- any chain \(\{d_n\}_{n \in \mathbb{N}}\), where \(d_n \in D\) and \(d_n \sqsubseteq d_{n+1}\) for all \(n \in \mathbb{N}\), has a least upper bound \(\bigsqcup_{n \in \mathbb{N}} d_n\).

We assume that each primitive statement \(p\) is given a denotation \([p] : D \rightarrow D\) (sending an abstract state before running \(p\) to the abstract state after). The function \([p]\) must be monotone and upward \(\omega\)-continuous. Also, two denotations \([b]_t, [b]_f : D \rightarrow D\) are associated with each boolean expression \(b\). If \(d\) is an abstract state before evaluating \(b\), then \([b]_t(d)\) (resp. \([b]_f(d)\)) correspond to the abstract states after evaluating to true, resp. false. After evaluating \(b\) the result of the evaluation is known and these denotations can add that knowledge to their arguments. The functions \([b]_t\) and \([b]_f\) must be monotone and upward \(\omega\)-continuous as well. Often they are also reductive (i.e., \([b]_t(d)\), \([b]_f(d)\) \(\sqsubseteq d\)).

For backward must-analyses, the abstract state space \((D, \sqsubseteq)\) must be an \(\omega\)-complete lower semilattice. Again we must have functions \([p], [b]_t, [b]_f : D \rightarrow D\), this time sending an abstract state after running \(p\) or evaluating \(b\) to true or false to the abstract state before. All these must be monotone and downward \(\omega\)-continuous.

A control-flow graph \(G\) is always a tuple \((V, ar, \ell, E, e^i, e^f, \sigma, \tau)\) where \(V\) is a set of nodes, \(ar : V \rightarrow \mathbb{N}\) gives the indegree of a node (the number of incoming edges), \(\ell : (v : V) \rightarrow (D^{\text{ar}(v)} \rightarrow D)\) maps a node to a corresponding transfer function, \(E\) is a set of edges, \(e^i, e^f \in E\) are two distinguished edges called the initial and final edge, respectively, \(\sigma : E \setminus \{e^f\} \rightarrow V\) gives the source node of an edge and \(\tau : E \setminus \{e^i\} \rightarrow V \times \mathbb{N}\) gives the target node of an edge together with its sequence number among the incoming edges of that node. Note that the initial edge does not have a source and the final edge does not have a target. The function \(\tau\) is injective—merging of abstract values may only be done by the transfer functions. Hence there exists an inverse partial function \(\tau^{-1} : V \times \mathbb{N} \rightarrow E \setminus \{e^i\}\).

The direct and inverse control-flow graphs \(G^P\) and \(G^P_e\) of a program \(P\) are defined inductively over the structure of \(P\), the definitions are given in Figs. 1 and 2. The sets of nodes and edges, as well as the mappings \(ar, \sigma\) and \(\tau\) and the edges \(e^i\) and \(e^f\) are presented there in a straightforward manner. The transfer functions are depicted inside the nodes; \(id\) denotes the identity function on \(D\) (and is only there, because it is convenient if every control-flow graph has a unique initial edge, just as we have required). The incoming edges of a node are numbered from top to bottom.

We see that in addition to the transfer functions \([p], [b]_t, [b]_f\) and \(\sqcup, \sqcap, \sqsubseteq\), given by the semantics of primitive constructs or the lattice \(D\) itself, the control-flow graph also requires certain semantic functions branch : \(D \rightarrow D\) and combine : \(D \times D \rightarrow D\); they must also be monotone and upwards (for forward analyses) or downwards (for backwards analyses) \(\omega\)-continuous. The nodes labeled with branch and combine are used to inform the program analysis about the control dependencies of the nodes in the control-flow graph; this information is necessary for some kinds of analyses. If the goal of an analysis is to determine the properties of program points (all kinds of value analyses are in this class), then the nodes labeled with branch and combine are not really necessary. Simple joining of abstract states coming from different branches suffices because, at the confluence point, we have to take the disjunction of the properties on
branches and this corresponds to the join on \(D\). The situation is the same for the analyses that attempt to determine the properties of program paths (for example, where certain variables are used or defined)—disjunction (or join) has to be taken at confluence points. In such cases, branch may simply be the identity function and combine the second projection.

However, there are some analyses, most notably analyses for information flow, that do not belong to either class. These analyses do not attempt to find properties, but to make sure that all program runs are somehow similar (and to find the level of similarity). In principle, we want to find the most precise equivalence relation from a given set of equivalence relations over program runs, such that it relates any two runs that are possible for the given program. If some equivalence relation is suitable for one set of program runs (say, all runs over a certain program path), and the same equivalence relation is also suitable for some other set of program runs (all runs over some other program path), then this is not yet sufficient for a run from the first set and a run from the second set to be related. Some extra processing is necessary when merging those paths and we have found that a form of pre- and post-processing given by Figs. 1 and 2 suffices for the examples that we are going to present. We believe that this form is sufficiently general and covers more-or-less every program analysis that we may want to execute. The combine-functions have appeared before in CFG-based analyses for secure information flow \([11,12]\).

The post-processing function combine is given some extra information about the state before running the branches. This control-flow graph edge from before the branches to combine does not really make the framework any more powerful, as the same information could be propagated through the branches by suitably modifying the domain \(D\). But this modification may overly complicate the domain and the transfer functions.

Abstract denotations are associated with arbitrary programs by a forward or a backward analysis in the following way. For any control graph \(G\), we define a functional \(\Phi_G : D \rightarrow ((E \rightarrow D) \rightarrow (E \rightarrow D))\) by

\[
\Phi_G(d) (i) (e) = \begin{cases}
 d, & \text{if } e = e^i, \\
 \ell(v) (i(e_1), \ldots, i(e_{ar(v)})), & \text{otherwise},
\end{cases}
\]

where \(v = \sigma(e)\) and \(e_i = \tau^{-1}(v, i)\).

The abstract denotation \([P]_\gg : D \rightarrow D\) of a program \(P\) defined by a forward analysis is \([P]_\gg (d) = \text{lfp}(\Phi_{G^\gg_P} (d))\) \((e^f)\), where the least fixedpoint exists since \(E \rightarrow D\) is an \(\omega\)-complete upper semilattice and \(\Phi_{G^\gg_P} (d)\) is upward \(\omega\)-continuous. \([P]_\gg\) is easily verified to be monotone and upward \(\omega\)-continuous.

The abstract denotation \([P]_\ll : D \rightarrow D\) assigned by a backward analysis to a program \(P\) is \([P]_\ll (d) = \text{gfp}(\Phi_{G^\ll_P} (d)) (e^f)\); the greatest fixedpoint exists since \(E \rightarrow D\) is an \(\omega\)-complete lower semilattice and \(\Phi_{G^\ll_P} (d)\) is downward \(\omega\)-continuous. \([P]_\ll : D \rightarrow D\) is also monotone and downward \(\omega\)-continuous.

As next we state some lemmas about the intermediate results of computing the least or greatest fixed points of \(\Phi_G(d)\); these lemmas are needed in the next section. These lemmas basically say that the when we compute the fixed point of
\(\Phi_G(d)\) then we are also computing the fixed points of \(\Phi_{G'}(d')\) where \(G'\) is a subgraph of \(G\) and \(d'\) is the is the abstract value on the initial edge of \(G'\). Hence these lemmas expose the compositionality in the computation of \(lfp(\Phi_G(d))\).

We concentrate on the case where \(D\) is an \(\omega\)-complete upper semilattice and the primitive semantic functions are all monotone and upward continuous. That is, we concentrate on \([P]_\triangleright\triangleright\); the results for \([P]_\lhd\lhd\) are analogous. For a control-flow graph \(G\) and a mapping \(i : E \rightarrow D\) we define the mappings \(i^+_j : E \rightarrow D\) by

\[
\forall e \in E : i^+_0(e) = \bot, \quad \forall i \in \mathbb{N} : i^+_i = \Phi_G(d)(i^+_i).
\]

We have \(i^+_i \sqsubseteq i^+_j\) whenever \(i \leq j\) because \(\Phi_G(d)\) is monotone and \(i^+_0 \sqsubseteq i^+_1\). The join operation \(\sqcup\) on \(D\) is extended pointwise to mappings from \(E\) to \(D\).

Lemma 1 (Kleene’s fixed point theorem). \(lfp(\Phi_G(d)) = \bigsqcup_{i \in \mathbb{N}} i^+_i\).

Also, for a mapping \(\kappa : E \rightarrow D\) define the mappings \(i^+_i\) by

\[
i_0^+ = \kappa, \quad \forall i \in \mathbb{N} : i_{i+1}^+ = i_i^+ \sqcup \Phi_G(d)(i_i^+)
\]

and let \(lfp^\kappa(\Phi_G(d)) = \bigsqcup_{i \in \mathbb{N}} i_i^+\); this join exists because of \(\omega\)-completeness of \(D\). By Lemma 1, \(lfp(\Phi_G(d)) = lfp^{i.e.\bot}(\Phi_G(d))\).

Lemma 2. Let \(\kappa, \kappa' : E \rightarrow D\) be such that \(\kappa \sqsubseteq \kappa' \sqsubseteq lfp^\kappa(\Phi_G(d))\). Then \(lfp^{\kappa'}(\Phi_G(d)) = lfp^\kappa(\Phi_G(d))\).

Proof. For all \(i \in \mathbb{N}\) we have

\[
i_i^+ \sqsubseteq i_i^+ \sqsubseteq lfp^\kappa(\Phi_G(d)),
\]

this follows trivially from the monotonicity of \(\Phi_G(d)\) and the definition of the fixed points. Taking the joins over all \(i\) gives us

\[
lfp^\kappa(\Phi_G(d)) \sqsubseteq lfp^{\kappa'}(\Phi_G(d)) \sqsubseteq lfp^{\kappa}(\Phi_G(d)).
\]

giving us the equality of least fixed points. \(\square\)

Lemma 3. Let \(G_p_\triangleright\triangleright\) be the control-flow graph of a program \(P\), let \(P'\) be a syntactic subprogram of \(P\) and let \(G_{p'}_\triangleright\triangleright\) be a subgraph of \(G_p_\triangleright\triangleright\) that is the control-flow graph of \(P'\). The initial and final edges \(e^i_{G_{p'}}\) and \(e^f_{G_{p'}}\) are also edges of \(G_{p'}_\triangleright\triangleright\). Let \(E'\) be the set of edges of \(G_{p'}_\triangleright\triangleright\). Let \(i \in \mathbb{N}\) be fixed. Let \(\kappa_i : E' \rightarrow D\) be the restriction of \(i_i^+_{G_p}\) to \(E'\). Let \(\hat{d} = i_i^+_{G_{p'}^\triangleright\triangleright}(e^i_{G_p})\) Then

\[
\kappa_i \sqsubseteq lfp(\Phi_{G_{p'}}(\hat{d})).
\]

Proof. Define the mappings \(\hat{i}_j : E' \rightarrow D\) by

\[
\forall e \in E' : \hat{i}_0 = \bot, \quad \forall j \in \mathbb{N} : \hat{i}_{j+1} = \Phi_{G_{p'}}(\hat{d})(\hat{i}_j).
\]

By induction over \(j\), we show that \(\kappa_j \sqsubseteq \hat{i}_j\) for all \(j \leq i\). If \(j = 0\) then \(\kappa_0 = \hat{i}_0 = \lambda e.\bot\). If \(j > 0\) then

\[
\hat{i}_j(e^i_{G_p}) = \hat{d} = i_i^+_{G_p}(e^i_{G_p}) \sqsubseteq i_j^+_{G_p}(e^i_{G_p}) = \kappa_j(e^i_{G_p}).
\]
If \(e \in E'\setminus\{e^i_{G_{p'}}\} \) then let \(v \) be the source node of \(e \) and let \(e_1, \ldots, e_k \) be the incoming edges of \(v \). The edges \(e_1, \ldots, e_k \) also belong to \(E' \). We have
\[
\hat{i}_j(e) = \ell(v)(\hat{i}_{j-1}(e_1), \ldots, \hat{i}_{j-1}(e_k)) \sqsupseteq \ell(v)(\kappa_{j-1}(e_1), \ldots, \kappa_{j-1}(e_k)) = \kappa_j(e),
\]
where the inequality is by the induction assumption and monotonicity of \(\ell(v) \). Finally, we get (1) from
\[
\kappa_i \sqsubseteq \hat{i}_i \sqsubseteq \bigsqcup_{j \in \mathbb{N}} \hat{i}_j = \text{lfp}(\Phi_{G_{p'}}(\hat{d})),
\]
where the last inequality comes from Lemma 1. \(\square \)

Corollary 4. With the same notations as in Lemma 3, we have
\[
[P'] \triangleright (t^G_{\downarrow i} G_{p'}(e^i_{G_{p'}})) \sqsupseteq t^G_{\downarrow i} G_{p'}(e^f_{G_{p'}}).
\]
Proof. Inequation (3) is obtained by applying the mappings in (1) to \(e^f_{G_{p'}}). \(\square \)

Lemma 5. Let \(v \) be a node in a control-flow graph \(G \). Let \(e_1, \ldots, e_{ar(v)} \) be the incoming edges of \(v \) (i.e. \(\tau(e_j) = (v, j) \)) and let \(e \) be the outgoing edge of \(v \) (i.e. \(\sigma(e) = v \)). Then \(\ell(v)(t^G_{\downarrow i} G(e_1), \ldots, t^G_{\downarrow i} G(e_{ar(v)})) \sqsupseteq t^G_{i+1} G(e) \) for all \(i \in \mathbb{N} \).

Proof. \(\ell(v)(t^G_{\downarrow i} G(e_1), \ldots, t^G_{\downarrow i} G(e_{ar(v)})) = t^G_{i+1} G(e) \). \(\square \)

Lemma 6. With the same notations as in Lemma 3, we have
\[
[P'] \triangleright (\text{lfp}(\Phi_{G_{p'}}(d))(e^i_{G_{p'}})) = \text{lfp}(\Phi_{G_{p'}}(d))(e^f_{G_{p'}}).
\]
Proof. The inequation “\(\triangleright \)” in (4) can be obtained by taking the join over all \(i \in \mathbb{N} \) in (3). To demonstrate the inequation “\(\sqsupseteq \)” define the mappings \(\hat{i}_j : E' \rightarrow D \) as in (2) where we take \(\hat{d} = \text{lfp}(\Phi_{G_{p'}}(d))(e^i_{G_{p'}}) \). By induction on \(j \) we can show that \(\hat{i}_j(e) \sqsubseteq \text{lfp}(\Phi_{G_{p'}}(d))(e), \) for all \(e \in E' \). Indeed, \(\hat{i}_0(e) = \perp \) for all \(e \), this establishes the basis of the induction.

If \(j > 0 \) and \(e = e^i_{G_{p'}} \), then \(\hat{i}_j(e) = \hat{d} = \text{lfp}(\Phi_{G_{p'}}(d))(e) \). If \(e \in E'\setminus\{e^i_{G_{p'}}\} \) then let \(v \) be the source of \(e \) and \(e_1, \ldots, e_k \) be the incoming edges of \(v \); the edges \(e_1, \ldots, e_k \) also belong to \(E' \). We have
\[
\hat{i}_j(e) = \ell(v)(\hat{i}_{j-1}(e_1), \ldots, \hat{i}_{j-1}(e_k)) \sqsubseteq \ell(v)(\text{lfp}(\Phi_{G_{p'}}(d))(e_1), \ldots, \text{lfp}(\Phi_{G_{p'}}(d))(e_k)) = \text{lfp}(\Phi_{G_{p'}}(d))(e),
\]
where the inequation comes from the induction assumption and the last equation from the properties of fixed points. Taking the join over all \(j \) gives us
\[
\text{lfp}(\Phi_{G_{p'}}(\hat{d}))(e) = \bigsqcup_{j \in \mathbb{N}} \hat{i}_j(e) \sqsubseteq \text{lfp}(\Phi_{G_{p'}}(d))(e)
\]
for all \(e \in E' \). This is the inequation “\(\sqsupseteq \)” in (4) for \(e = e^f_{G_{p'}} \). \(\square \)

3. **Type systems**

We are now ready to proceed to our type systems. We present a schematic type system for both forward and backward analyses. Type systems for concrete analyses are obtained as instances.

In both cases, types are of the form \(d_1 \rightarrow d_2 \) where \(d_1, d_2 \in D \), reflecting the idea that denotations of programs are transformers of (standard or non-standard) states. The intended meaning of a typing judgement \(P : d_1 \rightarrow d_2 \) is that if the state before running \(P \) can be described by \(d_1 \), then the state after is described by \(d_2 \). This is independent of the direction of the analysis, i.e., the implication sign in the type always indicates the direction of running the program.
Also in both cases, the type system is extracted from the definition of control-flow graphs for programs. The typing rule for each statement-construct is read off from the corresponding clause in the definition of control-flow graphs. The rule (sub) is a subsumption rule combining the usual subsumption rule with structural subtyping for implications.

The type system derived from a forward analysis is presented in Fig. 3. All rules, except (while), are self-explanatory. In (while), d' is a form of a loop invariant—it corresponds to the abstract state at the back-edge in the direct control-flow graph of the while-statement. The normal use of the type system for analyzing a program is this: given a program P and an abstract state d, find an abstract state d' such that $P : d \rightarrow d'$. Inspecting the rule set, one can see that the process is immediate except for two aspects: (1) it is not a priori clear if and when it is necessary to apply (sub) and (2) applying (while) takes guessing a suitable invariant.

The type system is equivalent to the inducing analysis in the sense of the following theorem.

Theorem 7. For any $P \in \text{Stm}$ and $d_1, d_2 \in D$ it holds that $\vdash \ P : d_1 \rightarrow d_2$ iff $\llbracket P \rrbracket_P (d_1) \subseteq d_2$.

Proof. Both directions are proved by induction over the structure of the program P; or over the derivation tree of $\vdash \ P : d_1 \rightarrow d_2$, which is equivalent.

Consider the ‘only if’ direction first. Let P be a program such that $\vdash \ P : d_1 \rightarrow d_2$ holds. Consider the last rule that was applied to derive $\vdash \ P : d_1 \rightarrow d_2$.

If the rule was (sub) then we also have $\vdash \ P : d_1 \rightarrow d_2'$ for some $d_1' \supseteq d_1$ and $d_2' \subseteq d_2$. Hence we have

$$\llbracket P \rrbracket_P (d_1) \subseteq \llbracket P \rrbracket_P (d_1') \subseteq \llbracket P \rrbracket_P (d_2'),$$

where the first inequality is given by the monotonicity of $\llbracket P \rrbracket_P$ and the second by the induction hypothesis applied to $\vdash \ P : d_1 \rightarrow d_2'$.

If the last rule was (prim) then P is a primitive statement p. We have $d_1 = d$ and $d_2 = \llbracket p \rrbracket_P (d) = \llbracket P \rrbracket_P (d_1)$ for some $d \in D$.

If the last rule was (seq) then P is of the form $P_1; P_2$. Also, there exists $d' \in D$, such that $\vdash \ P_1 : d_1 \rightarrow d'$ and $\vdash \ P_2 : d' \rightarrow d_2$. The induction hypothesis gives us $\llbracket P_1 \rrbracket_P (d_1) \subseteq d'$ and $\llbracket P_2 \rrbracket_P (d') \subseteq d_2$. Consider the computation of $\text{lfp}(\Phi_{G_P} (d_1))$; let i^d_P be defined as in the end of Section 2. Let e be the edge in G_P that is between G_{P_1} and G_{P_2}.

Let $i \geq 1$. Corollary 4, when applied to the subprogram P_1, gives us

$$i^d_P(e) \subseteq \llbracket P_1 \rrbracket_P (i^d_P(e)) = \llbracket P_1 \rrbracket_P (d_1) \subseteq d'.$$

Applying Corollary 4 to the subprogram P_2 gives

$$i^d_P(e') \subseteq \llbracket P_2 \rrbracket_P (i^d_P(e)) \subseteq \llbracket P_2 \rrbracket_P (d') \subseteq d_2.$$

Hence by Lemma 1, $\llbracket P \rrbracket_P (d_1) = \text{lfp}(\Phi_{G_P} (d_1))(e) \subseteq d_2$.

Fig. 3. Schematic type system corresponding to forward may-analyses.
If the last rule that was applied to derive $\triangleright\!
abla\! P : d_1 \rightarrow d_2$ was (if) then P is of the form if b then P_1 else P_2. Let us give the following names to the following edges in G_P^{\bowtie} (see Fig. 1):

- e_{1a} and e_{2a} are the edges from the node labeled with branch to the nodes labeled with $[b], [b], \|$ respectively;
- e_{1b} [resp. e_{2b}] is the initial edge of G_{P_1} [resp. G_{P_2}];
- e_{1c} [resp. e_{2c}] is the final edge of G_{P_1} [resp. G_{P_2}];
- e_3 [resp. e_4] is the edge from the node labeled with $\lor [\text{resp. } id]$ to the node labeled with combine.

The induction hypothesis gives us $[P_1], ([b], (\text{branch}(d))) \sqsubseteq d'$ and $[P_2], ([b], (\text{branch}(d))) \sqsubseteq d'$. Let $i \geq 1$. Using Lemma 5 and Corollary 4, as well as the induction hypothesis and the monotonicity of semantic functions, we can derive

$$
i_0^{G_P^{\bowtie}}(e^f) \sqsubseteq \text{combine}(\ni_i^{G_P^{\bowtie}}(e_4), \ni_i^{G_P^{\bowtie}}(e_3))$$

$$\sqsubseteq \text{combine}(d, \ni_i^{G_P^{\bowtie}}(e_{1c}) \lor \ni_i^{G_P^{\bowtie}}(e_{2c}))$$

$$\sqsubseteq \text{combine}(d, [P_1], \ni_i^{G_P^{\bowtie}}(e_{1b}) \lor [P_2], \ni_i^{G_P^{\bowtie}}(e_{2b})))$$

Hence by Lemma 1, $[P], (d) = \text{lfp}(\Phi_{G_P^{\bowtie}}(d)) \sqsubseteq \text{combine}(d, d')$.

If the last rule that was applied to derive $\triangleright\!
abla\! P : d_1 \rightarrow d_2$ was (while) then P is of the form while b do P_1. Let us give the following names to the following edges in G_P^{\bowtie} (see Fig. 1):

- e_{1a} [resp. e_{2a}; e_5; e_6; e_7] is the edge from the node labeled with branch [resp. \lor; \lor; $[b]$; id] to the node labeled with $\lor [\text{resp. } [b]; [b]; \|$; combine; combine];
- e_3 [resp. e_4] is the initial [resp. final] edge of G_{P_1}.

According to the rule (while) and the induction assumption there exists $d' \in D$, such that $\text{branch}(d) \sqsubseteq d'$ and $[P_1], ([b], (d')) \sqsubseteq d'$. Using mathematical induction over i, we show that for all $i \in \mathbb{N}$, $\ni_i^{G_P^{\bowtie}}(e_4) \sqsubseteq d'$. Indeed, $\ni_0^{G_P^{\bowtie}}(e_4) = \perp$ and

$$\ni_{i+1}^{G_P^{\bowtie}}(e_4) \sqsubseteq [P_1], ([b], (\ni_i^{G_P^{\bowtie}}(e_2)))$$

$$\sqsubseteq [P_1], ([b], (\ni_i^{G_P^{\bowtie}}(e_2) \lor \ni_i^{G_P^{\bowtie}}(e_4)))$$

$$\sqsubseteq [P_1], ([b], \text{branch}(d) \lor d') = [P_1], ([b], (d')) \sqsubseteq d',$$

here we have besides the induction assumption $\ni_i^{G_P^{\bowtie}}(e_4) \sqsubseteq d'$ also used Lemma 5 and Corollary 4.

Let $i \geq 1$. Using Lemma 5 and Corollary 4, as well as the induction hypothesis and the monotonicity of semantic functions, we can derive

$$\ni_i^{G_P^{\bowtie}}(e^f) \sqsubseteq \text{combine}(\ni_i^{G_P^{\bowtie}}(e_7), \ni_i^{G_P^{\bowtie}}(e_6))$$

$$\sqsubseteq \text{combine}(d, [b], (\ni_i^{G_P^{\bowtie}}(e_5)))$$

$$\sqsubseteq \text{combine}(d, [b], (\ni_i^{G_P^{\bowtie}}(e_1) \lor \ni_i^{G_P^{\bowtie}}(e_4)))$$

$$\sqsubseteq \text{combine}(d, [b], (\text{branch}(d) \lor d')) = \text{combine}(d, [b], (d')).$$

Hence by Lemma 1, $[P], (d) = \text{lfp}(\Phi_{G_P^{\bowtie}}(d)) \sqsubseteq \text{combine}(d, [b], (d'))$.
For showing the ‘if’ direction, let P be a program and $d \in D$. We show that $\vdash_{\text{P}} P : d \rightarrow \llbracket P \rrbracket (d)$; the claim of the theorem in its full generality is then obtained by applying the typing rule (sub).

If P is a primitive statement p then we have $\vdash_{\text{P}} p : d \rightarrow \llbracket p \rrbracket (d)$ by the rule (prim). Also, $\llbracket p \rrbracket (d) = \llbracket p \rrbracket (d)$.

If P is $P_1; P_2$ then let $d'' = \llbracket P_1 \rrbracket (d)$ and let e be the edge of G_P that connects G_{P_1} and G_{P_2}. Let $d' = \text{lfp}(\Phi_{G_P}) (d)(e)$. Applying Lemma 6 to P_1 and P_2 we get $\llbracket P_1 \rrbracket (d) = d'$ and $\llbracket P_2 \rrbracket (d') = d''$. By the induction assumption, we can derive $\vdash_{\text{P}} P_1 : d \rightarrow d'$ and $\vdash_{\text{P}} P_2 : d' \rightarrow d''$. These derivations together with an application of the rule (seq) give us the necessary derivation for P.

If P is $\text{if } b \text{ then } P_1 \text{ else } P_2$ then let certain edges in G_P be given the same names as in the proof for if-direction. For such named edge e_k let $d_k = \text{lfp}(\Phi_{G_P}(d))(e_k)$. We have $d_{1a} = d_{2a} = \text{branch}(d), d_{1b} = (b)_{\text{branch}}(d), d_{2b} = (b)_{\text{branch}}(d)$ by the properties of fixed points; $d_{1c} = \llbracket P_1 \rrbracket (\text{branch}(d)), d_{2c} = \llbracket P_2 \rrbracket (\text{branch}(d))$ by Lemma 6; $\llbracket P \rrbracket (d) = \text{combine}(d, d_{1c} \cup d_{2c})$. Let $d' = d_{1c} \cup d_{2c}$. By induction assumption we derive $\vdash_{\text{P}} P_1 : \llbracket P_1 \rrbracket (\text{branch}(d)) \rightarrow d_{1c}$ and $\vdash_{\text{P}} P_2 : \llbracket P_2 \rrbracket (\text{branch}(d)) \rightarrow d_{2c}$. Using the typing rule (sub) we can derive $\vdash_{\text{P}} P_1 : \llbracket P_1 \rrbracket (\text{branch}(d)) \rightarrow d'$ and $\vdash_{\text{P}} P_2 : \llbracket P_2 \rrbracket (\text{branch}(d)) \rightarrow d'$. These derivations together with an application of the rule (if) give us the necessary derivation for P.

If P is $\text{while } b \text{ do } P_1$ then let certain edges in G_P be given the same names as in the proof for if-direction. Define the values d_k as above. Let $d' = d_2$. Then $\text{branch}(d) \subseteq d'$ because $d' = \text{branch}(d) \cup d_4$. By Lemma 6, $\llbracket P_1 \rrbracket (\text{branch}(d')) = d_4$. Hence, by induction assumption, we can derive $\vdash_{\text{P}} P_1 : \llbracket P_1 \rrbracket (d') \rightarrow d_4$ and, using the rule (sub), also $\vdash_{\text{P}} P_1 : \llbracket P_1 \rrbracket (d') \rightarrow d'$. By the properties of fixed points we have $\llbracket P \rrbracket (d) = \text{combine}(d, (b)_{\text{branch}}(d'))$ and the corresponding type can be derived with the help of the rule (while). \hfill \Box

We see that, given an initial abstract state, the type system can approve as final any abstract state that is weaker (containing more concrete states) than the final abstract state computed by the analysis. The analysis gives the strongest (smallest) postcondition of a precondition, whereas the type system accepts any postcondition.

The type system corresponding to backward analyses is given in Fig. 4. (Remember that the direction of the arrow still indicates the direction of running the program.) The rules are different, since inverse control-flow graphs differ from direct ones. But the ideas are still exactly the same. Here the loop invariant d' corresponds to the abstract state at the back-edge of the inverse control-flow graph of the while-statement. The normal use of the type system to analyze a program is this: given a program P and an abstract state d, find an abstract state d' such that $P : d' \rightarrow d$.

Again we have a perfect match between the type system and the analysis; the proof is the same as in the forward case:

Theorem 8. For any $P \in \text{Stm}$ and $d_1, d_2 \in D$ it holds that $\vdash_{\llbracket \text{P} \rrbracket} P : d_1 \rightarrow d_2 \iff d_1 \subseteq \llbracket P \rrbracket \llbracket d_2 \rrbracket$.

Here the type system can identify as initial any abstract state that is stronger than the initial state computed by the analysis. While the analysis delivers the weakest precondition of a postcondition, the type system approves any precondition.

It is now also clear why we wanted forward analyses to be “may” and backward analyses to be “must”: this gives the subsumption rules their normal shape: the implication construct is covariant in its succedent and contravariant in the antecedent and not the other way around.
4. Examples

To demonstrate the generality of the framework given in Section 2 and the mechanics of our type systems, we now show how some concrete data-flow analyses can be expressed within it and discuss the type systems that our method delivers for them. We present the analyses for constant propagation, very busy expressions, and secure information flow. And we show even Hoare logic to be an instance of our framework.

In the examples below, we assume that the programming language is defined over a supply Var of arithmetic variables, that primitive statements p have the form $x := aop(x_1, \ldots, x_k)$ where $x, x_1, \ldots, x_k \in \text{Var}$ and aop is an arithmetic operator with arity k, and Boolean expressions have the form $bop(x_1, \ldots, x_k)$ where bop is an Boolean operator with arity k. In the following, we let o range over both aop and bop.

4.1. Constant propagation

Constant propagation is a forward may-analysis. The aim is to determine for all program points the values of as many variables as possible. In the context of type systems, we are given the initial values of some variables and want to determine the final values of as many variables as possible.

Let $Z^T = Z \cup \{\top\}$, where \top is the largest element and other elements are incomparable. The abstract state space D for constant propagation is $(\text{Var} \rightarrow Z^T)_X$, where X denotes the set $X \cup \{\bot\}$ with \bot the smallest element and all other elements ordered in the same way as in X, and the order on $\text{Var} \rightarrow Z^T$ is defined pointwise.

The analysis works in the forward direction. For ease of exposition, let $aop \in Z \cup \{+, \times\}$ and $bop \in \{\leq, =\}$. Here the elements of Z are nullary operators and the rest are binary. If $d = \bot$ then $[x := o(x_1, \ldots, x_k)](d) = \bot$ and $[o(x_1, \ldots, x_k)](d) = [\bot](d) = \bot$. Otherwise

\[
[x := n](d) = d[x \mapsto n],
\]

\[
[x := y + z](d) = \begin{cases}
 d[x \mapsto d(y) + d(z)], & d(y), d(z) \in Z, \\
 d[x \mapsto \top], & \text{otherwise},
\end{cases}
\]

\[
[x := y \times z](d) = \begin{cases}
 d[x \mapsto 0], & d(y) = 0 \text{ or } d(z) = 0, \\
 d[x \mapsto d(y) \cdot d(z)], & d(y), d(z) \in Z \setminus \{0\}, \\
 d[x \mapsto \top], & \text{otherwise},
\end{cases}
\]

\[
[x \leq y](d) = \begin{cases}
 \bot, & d(x), d(y) \in Z \text{ and } d(x) > d(y), \\
 d, & \text{otherwise},
\end{cases}
\]

\[
[x \leq y](d) = \begin{cases}
 \bot, & d(x), d(y) \in Z \text{ and } d(x) \leq d(y), \\
 d, & \text{otherwise},
\end{cases}
\]

\[
[x = y](d) = \begin{cases}
 \bot, & d(x), d(y) \in Z \text{ and } d(x) \neq d(y), \\
 d[y \mapsto d(x)], & d(y) \in Z \text{ and } d(x) = \top, \\
 d[x \mapsto d(y)], & d(x) \in Z \text{ and } d(y) = \top, \\
 d, & \text{otherwise},
\end{cases}
\]

\[
[x = y](d) = \begin{cases}
 \bot, & d(x), d(y) \in Z \text{ and } d(x) = d(y), \\
 d, & \text{otherwise}.
\end{cases}
\]

Finally, $\text{branch}(d) = d$ and $\text{combine}(d, d') = d'$. The corresponding type system is given in Fig. 5. Fig. 5 may seem quite different from Fig. 3 but in reality this is not so. The denotations of primitive statements and boolean expressions are defined through case analysis. We have chosen to present the different cases as different rules. We could have presented single rules for primitive statements, if-statements and while-statements by directly following Fig. 3, thus obtaining the same five rules as in Fig. 3, but then the case analysis would have been present in these rules, making them quite unreadable. Also, in some rules for if- and while-statements we have left out some premises of the form
\[\begin{array}{c}
\vdash P : d' \rightarrow d' \\
\vdash P : d_1 \rightarrow d_2 \\
\vdash P : d_1 \rightarrow d_3 \\
\vdash d_1 \subseteq d_2 \quad \vdash P : d_1 \rightarrow d_2 \\
(\text{sub})
\end{array} \]

\[\begin{array}{c}
\vdash x := o(x_1, \ldots, x_k) : d \rightarrow d[x \mapsto \top] \\
(\text{prim}_1)
\end{array} \]

\[\begin{array}{c}
\vdash x := n : d \rightarrow d[x \mapsto n] \\
(\text{prim}_2)
\end{array} \]

\[\begin{array}{c}
\vdash d(y) \in Z \quad \vdash d(x) \in Z \\
(\text{prim}_3)
\end{array} \]

\[\begin{array}{c}
\vdash x := o(x, y) : d \rightarrow d[x \mapsto o(d(y), d(x))] \\
\vdash d(y) = 0 \text{ or } d(x) = 0 \\
(\text{prim}_4)
\end{array} \]

\[\begin{array}{c}
\vdash x := y \times x : d \rightarrow d[x \mapsto 0] \\
\vdash P_1 : d \rightarrow d' \\
\vdash P_2 : d \rightarrow d'' \\
\vdash \text{seq}
\end{array} \]

\[\begin{array}{c}
\vdash P_1 : d \rightarrow d' \\
\vdash P_2 : d \rightarrow d'' \\
\vdash d \rightarrow \top \quad (\text{if}_1)
\end{array} \]

\[\begin{array}{c}
\vdash \text{if } o(x, y) \text{ then } P_1 \text{ else } P_2 : d \rightarrow d' \\
\vdash \text{if}_2
\end{array} \]

\[\begin{array}{c}
\vdash d(x) \in Z \\
\vdash d(y) \in Z \\
\vdash o(d(x), d(y)) \\
\vdash P_1 : d \rightarrow d' \\
\vdash P_2 : d \rightarrow d'' \\
\vdash d \rightarrow d' \\
\vdash d \rightarrow d'' \\
\vdash \text{if}_3
\end{array} \]

\[\begin{array}{c}
\vdash \text{if } o(x, y) \text{ then } P_1 \text{ else } P_2 : d \rightarrow d' \\
\vdash \text{if}_4
\end{array} \]

\[\begin{array}{c}
\vdash d(x) \in Z \\
\vdash d(y) = \top \\
\vdash P_1 : d \rightarrow d' \\
\vdash P_2 : d \rightarrow d'' \\
\vdash \text{if}_5
\end{array} \]

\[\begin{array}{c}
\vdash \text{while } o(x, y) \text{ do } P : d \rightarrow d' \\
\vdash \text{while}_1
\end{array} \]

\[\begin{array}{c}
\vdash \text{while } o(x, y) \text{ do } P : d \rightarrow \bot \\
\vdash \text{while}_2
\end{array} \]

\[\begin{array}{c}
\vdash d(x) \in Z \\
\vdash d(y) \in Z \\
\vdash o(d(x), d(y)) \\
\vdash \text{while}_3
\end{array} \]

\[\begin{array}{c}
\vdash \text{while } o(x, y) \text{ do } P : d \rightarrow d' \\
\vdash \text{while}_4
\end{array} \]

\[\begin{array}{c}
\vdash \text{branch}(d) = d \quad \text{and } \text{combine}(d, d') = d' \\
\end{array} \]

Fig. 5. Type system from constant propagation analysis.

\[\vdash P : \bot \rightarrow d. \] The reason is, that a premise in this form is always true. Indeed, \(\vdash P : \bot \rightarrow \bot \) can be easily inferred for any \(P \in \text{Stm} \).

We stress that this “tweaking” of rules in Fig. 5 in comparison with the general rules in Fig. 3 is not inherently necessary but is done solely for presentation here. We want to show that intuitive data-flow analyses lead to type systems whose rules correspond to our intuition, too.

4.2. Very busy expressions

Very busy expressions [16] is a backward must-analysis. The aim of this analysis is to determine, for each program point, which expressions will certainly be computed after the execution has passed that point and before any of the variables in these expressions are redefined. The results of this analysis may be used to decide whether it is worthwhile to precompute some expressions.

Let \(\text{Exp} \) be the set of all expressions, i.e. terms \(o(x_1, \ldots, x_k) \). The underlying lattice \(D \) for very busy expressions analysis is \(\mathcal{P}(\text{Exp}) \) (the set of all subsets of \(\text{Exp} \)) with the natural order. For each \(x \in \text{Var} \) let \(\text{Exp}_x \subseteq \text{Exp} \) be the set of all these expressions that contain \(x \). The analysis works in the backward direction. We define

\[[x := o(x_1, \ldots, x_k)](d) = (d \setminus \text{Exp}_x) \cup \{ o(x_1, \ldots, x_k) \} \]

\[[o(x_1, \ldots, x_k)]_x(d) = [o(x_1, \ldots, x_k)]_x(d) = d \cup \{ o(x_1, \ldots, x_k) \}, \]

\[\text{branch}(d) = d \quad \text{and } \text{combine}(d, d') = d'. \] This gives us the analysis in [16]. The equivalent type system is given in Fig. 6.
4.3. Secure information flow

Next we turn to secure information flow. The classical secure information flow analysis in the spirit of Denning and Denning [7] is a forward may-analysis. Let \(\mathcal{L} = (\mathcal{L}, \lor, \land, \mathbf{1}, \mathbf{0}) \) be a finite lattice of security classes for variables. The goal of the analysis is to verify that the initial value of some variable \(x \) may only affect the final value of a variable \(y \) if the final security class of \(y \) is at least as great as the initial security class of \(x \).

Let \(\text{Var}' = \text{Var} \cup \{\text{pc}\} \). The abstract state space \(D \) of the analysis is \(\text{Var}' \rightarrow \mathcal{L} \) where the ordering is defined pointwise. Given \(d \in D \) describing the security classes at the start of the program, the program analysis attempts to find for each variable the security class that bounds from above the information that may flow to its final value. The security class \(d(\text{pc}) \) contains an upper bound on the information that was used to make the decisions (at branching points) that caused the execution to reach the current program point; \(d(\text{pc}) \) should be equal to \(\mathbf{0} \) at the start of the program. The notation \(\text{pc} \) is a mnemonic for “program counter”.

The analysis works in the forward direction. The semantics of statements and expressions is defined by

\[
\begin{align*}
\left[x := o(x_1, \ldots, x_k) \right](d) &= d[x \mapsto d(x_1) \lor \cdots \lor d(x_k) \lor d(\text{pc})], \\
\left[o(x_1, \ldots, x_k) \right]_t(d) &= \left[o(x_1, \ldots, x_k) \right]_t(d) = d[\text{pc} \mapsto d(x_1) \lor \cdots \lor d(x_k) \lor d(\text{pc})].
\end{align*}
\]

That is, the security level of the affected quantity (a variable or the program counter) is updated with the join of security levels of affecting quantities.

We see that the explicit flows in the program (assigning a variable to another) are handled directly by the analysis. The implicit flows (one variable controlling whether something is assigned to another one) are handled by increasing of the security class of the program counter. At the points where the conditional statements end, the combine-function restores the security class of \(\text{pc} \) to the one before the conditional statement: \(\text{combine}(d, d') = d'[\text{pc} \mapsto d(\text{pc})] \). The branch-function is just the identity mapping.

The resulting type system is given in Fig. 7. Actually, if we followed Fig. 3 to the letter, then we would have had the following rule for \(\text{while} \):

\[
\begin{array}{c}
\vdash P : d'[\text{pc} \mapsto d'(x_1) \lor \cdots \lor d'(x_k) \lor d'(\text{pc})] \\
\vdash \text{while } o(x_1, \ldots, x_k) \text{ do } P : d \rightarrow d'[\text{pc} \mapsto d(\text{pc})]
\end{array}
\]

(in the conclusion both \(\left[o(x_1, \ldots, x_k) \right]_t f \) and combine change the value of \(d'(\text{pc}) \) but \(\text{combine} \) is the last one). To get the rule (\(\text{while} \)) in Fig. 7, we replace \(d' \) to the right of the arrow in the premise of (5) with \(d'[\text{pc} \mapsto d'(x_1) \lor \cdots \lor d'(x_k) \lor d'(\text{pc})] \) which we can then rename into \(d' \) on both sides of the arrow. But now the new \(d' \) cannot be arbitrary: \(d'(\text{pc}) \) must be at least \(d'(x_i) \) for all \(i \in \{1, \ldots, k\} \). The rule (5) and the modified rule (\(\text{while} \)) of Fig. 7 are mutually derivable. Indeed, we can derive (\(\text{while} \)) from (5) by

\[
\begin{array}{c}
\forall i : d'(x_i) \leq d'(\text{pc}) \\
\vdash P : d'[\text{pc} \mapsto d'(x_1) \lor \cdots \lor d'(x_k) \lor d'(\text{pc})] = d' \\
\vdash P : d'[\text{pc} \mapsto d'(x_1) \lor \cdots \lor d'(x_k) \lor d'(\text{pc})] \rightarrow d' & \text{(sub)}
\end{array}
\]

\[
\begin{array}{c}
\vdash P : d'[\text{pc} \mapsto d'(x_1) \lor \cdots \lor d'(x_k) \lor d'(\text{pc})] \\
\vdash \text{while } o(x_1, \ldots, x_k) \text{ do } P : d \rightarrow d'[\text{pc} \mapsto d(\text{pc})]
\end{array}
\]

(5).
∀ \text{variable is executed or not; it should equal class. The security class class, such that the initial value of that variable does not flow to the final value of any variable with a lower security classes at the end of the program the program analysis attempts to find for each variable the maximum initial security }

\[\forall \text{variable is executed or not; it should equal class. The security class class, such that the initial value of that variable does not flow to the final value of any variable with a lower security classes at the end of the program the program analysis attempts to find for each variable the maximum initial security } \]

\[\forall i : d''(x_i) \leq d''(pc) \text{ and } d' \subseteq d''. \text{ We can derive (5) from (while) by first deriving} \]

\[\vdash P : d'' \rightarrow d' \]

\[\vdash P : d'' \rightarrow d'' \]

\[\vdash P : d'' \rightarrow d'' \]

\[\forall i : d''(x_i) \leq d''(pc) \]

\[\text{and then using the equality } d''[pc \mapsto d(pc)] = d'[pc \mapsto d(pc)] \text{ to the right of the arrow in the conclusion of this derivation (technically, this is also an application of the rule (sub)).} \]

\[\text{4.4. A backward secure information flow analysis} \]

We now look at an alternative secure information flow analysis, which is backward and must. The abstract state space \(D \) of this analysis is the same as that of the forwards analysis just considered. Given \(d \in D \) describing the security classes at the end of the program the program analysis attempts to find for each variable the maximum initial security class, such that the initial value of that variable does not flow to the final value of any variable with a lower security class. The security class \(d(pc) \) holds a similar upper bound for the decisions influencing whether an assignment to a variable is executed or not; it should equal \(1 \) at the end of the program (i.e. at the beginning of the analysis).

Let us define an auxiliary function \(la : \mathcal{P}(\mathcal{V}ar') \times D \times L \rightarrow D \) by

\[la(X, d, c)(x) = \begin{cases} d(x) \wedge c, & x \in X, \\ d(x), & x \notin X. \end{cases} \]

We see that \(la \) is used to lower the security classes of the variables in \(X \) to the level of at most \(c \). The semantics of statements \([x := o(x_1, \ldots, x_k)] \) is defined by

\[[x := o(x_1, \ldots, x_k)](d) = la([x_1, \ldots, x_k, pc], o(x_1, \ldots, x_k), d[x \mapsto 1], d(x)). \]

That is, before the statement \(x := o(x_1, \ldots, x_k) \) the variable \(x \) is dead hence the secrecy of its value is of no importance. As the values of \(x \) may influence the final values of the variables, they cannot be more secret than \(x \) is after the statement.

The same holds for implicit flows through \(pc \). The semantics of Boolean expressions is

\[[o(x_1, \ldots, x_k)]_i(d) = [o(x_1, \ldots, x_k)]_o(d) = la([x_1, \ldots, x_k], d, d(pc)). \]

At the beginning of a branching construct, the security classes of the variables \(x_i \) of its guard \(o(x_1, \ldots, x_k) \) should be lowered to the level of security classes that the variables assigned to in the branches have at the end of the branching construct. The meet of these security classes is collected into \(d(pc) \). We do not want to collect anything more into \(d(pc) \), for example the security classes of variables that are assigned to after the end of the branching construct. Hence we let the branch-function reset the security class of \(pc \). We define \(\text{branch}(d) = d[pc \mapsto 1] \). The security class of \(pc \) has to be restored afterwards, so we put \(\text{combine}(d, d') = d'[pc \mapsto d(pc) \wedge d'(pc)] \). Recall that \(d \) was the abstract value at the incoming edge of the corresponding branch-node (in the inverse control-flow graph).
\[
\begin{align*}
d_1 \subseteq d_1' & \quad \vdash \text{P : } d_1' \rightarrow d_1 \quad \text{d_1' \subseteq d_2} \tag{sub} \\
\vdash \text{x := o(x_1, \ldots, x_k)} : \\
d_{\text{pc} \rightarrow} d_{\text{pc} \rightarrow} \land d(x) & \quad \vdash \text{x \rightarrow 1}[x_i \rightarrow d(x_i) \land d(x)]_{i=1}^k \rightarrow d \\
\vdash P_1 : d'' \rightarrow d' & \quad \vdash P_2 : d' \rightarrow d \\
\vdash P_1 ; P_2 : d'' \rightarrow d
\end{align*}
\]

(prim)

Indeed, if \(d(\text{pc} \rightarrow) = 1 \) (as set by branch) then \(\lceil b \rceil \{d\} = d \). In the conclusion of the rule, the application of combine undoes the setting of \(d(\text{pc} \rightarrow) \) to 1. We modify this rule by denoting \(d'[x_i \rightarrow d'(x_i) \land d'(\text{pc})]_{i=1}^k \) by \(d' \), giving us

\[
\begin{align*}
\vdash P : d' & \rightarrow d' \land [\text{pc} \rightarrow 1] \quad \forall i : d'(x_i) \leq d'(\text{pc}) \\
\vdash \text{while } o(x_1, \ldots, x_k) \text{ do } P : d' \land d \rightarrow d
\end{align*}
\]

(6)

The new \(d' \) cannot be completely arbitrary—\(d'(x_i) \) must be smaller or equal to \(d'(\text{pc}) \). This side condition is added to the rule. The original \(d' \) is then just something that is larger than the new \(d' \). As the original \(d' \) only occurs on the left side of the arrow in the premise we can safely replace it with the new \(d' \). Abbreviate \(d'' = d'[x_i \rightarrow d'(x_i) \land d'(\text{pc})]_{i=1}^k \), then \(d'' \subseteq d' \) and \(\forall i : d''(x_i) \leq d''(\text{pc}) \). We can derive (7) from (6) by

\[
\begin{align*}
\forall i : d'(x_i) \leq d'(\text{pc}) & \quad \vdash P : d' \rightarrow d' \land [\text{pc} \rightarrow 1] \\
\vdash P : d'' \rightarrow d'' \land [\text{pc} \rightarrow 1] \\
\vdash \text{while } o(x_1, \ldots, x_k) \text{ do } P : d'' \land d \rightarrow d
\end{align*}
\]

(6)

and (6) from (7) by

\[
\begin{align*}
\forall i : d''(x_i) \leq d''(\text{pc}) & \quad \vdash P : d'' \rightarrow d'' \land [\text{pc} \rightarrow 1] \\
\vdash \text{while } o(x_1, \ldots, x_k) \text{ do } P : d'' \land d \rightarrow d
\end{align*}
\]

(7)

We further modify (7) by denoting \(d'' \land [\text{pc} \rightarrow 1] \) by \(d' \). This gives us the rule (while) in Fig. 8. Now we also require that the new \(d' \) is smaller or equal to \(d(\text{pc} \rightarrow 1) \). Abbreviate \(d^* = d'' \land [\text{pc} \rightarrow 1], d^+ = d'[\text{pc} \rightarrow d'(\text{pc}) \land d(\text{pc})] \) and \(d^k = d^*[\text{pc} \rightarrow d^*(\text{pc}) \land d(\text{pc})] \). We can derive (while) from (7) by

\[
\begin{align*}
\forall i : d''(x_i) \leq d''(\text{pc}) & \quad \vdash P : d'' \rightarrow d'' \land [\text{pc} \rightarrow 1] \\
\vdash P : d'[\text{pc} \rightarrow 1] & \quad \vdash P : d' \rightarrow d^* \\
\vdash \text{while } o(x_1, \ldots, x_k) \text{ do } P : d' \land d \rightarrow d
\end{align*}
\]

(7)

The type system derived from this analysis is given in Fig. 8. But again we have simplified some of the rules. If we had followed Fig. 4 literally, then the rule for while-statements would have been

\[
\begin{align*}
\forall i : d'(x_i) \leq d'(\text{pc}) & \quad \vdash P : d' \rightarrow d' \land [\text{pc} \rightarrow 1] \\
\vdash \text{while } o(x_1, \ldots, x_k) \text{ do } P : d' \land d \rightarrow d
\end{align*}
\]

(while)

Fig. 8. Type system from backward information flow analysis.
5. Certification and checking of typings

We refrain from presenting the details here.

4.5. Hoare logic

Fig. 9. “Type system” from standard weakest precondition calculus (= Hoare logic).

and (7) from (while) by

\[
\begin{align*}
\frac{d^* \subseteq d'}{\vdash\ P : d' \rightarrow d^*} & \quad (\text{sub}) \\
\frac{\forall x_i : d'(x_i) \leq d'(\text{pc})}{\forall x_i : d^*(x_i) \leq d^*(\text{pc})} & \quad \text{and} \\
\frac{d^* \subseteq d[\text{pc} \mapsto 1]}{d' \cap d = d^\circ} & \quad \text{by (7) from (while)} \\
\frac{\vdash\ P_1 : d' \rightarrow d[\text{pc} \mapsto 1]}{\vdash\ P_2 : d' \rightarrow d[\text{pc} \mapsto 1]} & \quad \text{and} \\
\frac{\vdash\ \text{if } o(x_1, \ldots, x_k) \text{ then } P_1 \text{ else } P_2 :}{d'[x_i \mapsto d'(x_i)] \land d'(\text{pc})_{i=1}^k [\text{pc} \mapsto d(\text{pc}) \land d'(\text{pc})] \rightarrow d} & \quad \text{(8)}
\end{align*}
\]

Here we denote \(d'[x_i \mapsto d'(x_i)] \land d'(\text{pc})_{i=1}^k [\text{pc} \mapsto d(\text{pc}) \land d'(\text{pc})]\) by \(d'\), this gives us the rule (if) in Fig. 8. We have to add the conditions \(d'(x_i) \leq d'(\text{pc}) \leq d(\text{pc})\) for the new \(d'\), because for the original \(d'\), these conditions held for \(d'[x_i \mapsto d'(x_i)] \land d'(\text{pc})_{i=1}^k [\text{pc} \mapsto d(\text{pc}) \land d'(\text{pc})]\). The mutual derivability of (if) and (8) is obvious.

4.5. Hoare logic

Hoare logic can be derived as a “type system” according to our method from the following backward analysis (essentially a weakest precondition calculus). We define \(D\) to be the set of all predicates on states, i.e., \(D = (\text{Var} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}\) and \(\sqsubseteq\) to be pointwise implication, so \(\phi \sqsubseteq \psi\) iff \(\phi s\) implies \(\psi s\) for any state \(s\). We define \([x := a]\phi = \lambda s.\phi(s[x \mapsto \lfloor a \rfloor s]), [b]_t \phi = \lambda s.\lfloor b \rfloor s \Rightarrow \phi s\), \([b]_t \phi = \lambda s.\lfloor b \rfloor s \Rightarrow \phi s\), branch(\(\phi\)) = \(\phi\), combine(\(\phi, \phi'\)) = \(\phi'\).

We get that \([P]_{\preceq}(\psi) = \text{wp}(\psi)\) where \(\text{wp}\) means the weakest precondition in the conventional sense. The corresponding “type system” is presented in Fig. 9, which is deductively equivalent to the standard formulation of Hoare logic.

It is also possible to derive a formulation of Hoare logic from a forward analysis (a strongest postcondition calculus). We refrain from presenting the details here.

5. Certification and checking of typings

In this section, we describe how to convince another party that a program \(P\) has a given type \(d_1 \rightarrow d_2\). We assume that we know a type derivation \(T\) with the root \(\vdash P : d_1 \rightarrow d_2\) (we concentrate on the type system in Fig. 3, the system in Fig. 4 is handled similarly). The checker only has to compare types and compute primitive semantic functions.

The certificate (proof) for \(\vdash P : d_1 \rightarrow d_2\) has the form \((d_1, \Psi(P, T, d_1, d_2))\) with an easily constructible \(\Psi(P, T, d_1) \in D^\ast\). The function \(\Psi\) is defined in Fig. 10.

Let us now describe the checking (verification) algorithm \(\Psi\). It takes as arguments a program \(P\), an abstract state \(d'_1\) and a certificate \(p \in D^\ast\) and either fails or returns an abstract state \(d'_2\) and \(p' \in D^\ast\). Failure implies that the proof is not accepted. To verify the proof \((d_1, p, d_2)\) for the program \(P\), one invokes \(\Psi(P, d_1, p)\), receives \((d'_2, p')\) and accepts
Fig. 10. Certificate for $P : d_1 \rightarrow d_2$ with type inference tree T.

\[
\Psi(P, T, d_1) = \begin{cases}
\Psi(P', T', d'_1) & R \text{ is (sub)} \\
\ || & R \text{ is (prim)} \\
\Psi(P_1, T', [d_1]) \cdot \Psi(P_2, T'_2, d') & R \text{ is (seq)} \\
\Psi(P_1, T', [b_1](\text{branch}(d_1))) \cdot \Psi(P_2, T'_2, [b_1](\text{branch}(d_1))) & R \text{ is (if)} \\
\ d' \cdot \Psi(P_1, T', [b_1](d')) & R \text{ is (while)},
\end{cases}
\]

here R is the last rule in T; T' is the rest of the tree T (T'_1 and T'_2, if R has two descendants); b, P_1, P_2, d' and d'_1 have the same meaning as in the rules.

Fig. 11. The checking algorithm $V(P, d, p)$.

\[
\begin{align*}
\text{case } P \text{ of} & \\
p: & \quad \text{return } ([p](d), p) \\
P_1; P_2: & \quad (d', p') \leftarrow \Psi(P_1, d, p) \\
& \quad \text{return } \Psi(P_2, d', p') \\
\text{if } b \text{ then } P_1 \text{ else } P_2: & \quad (d_1, p') \leftarrow \Psi(P_1, [b_1](\text{branch}(d)), p) \\
& \quad (d_2, p'') \leftarrow \Psi(P_2, [b_1](\text{branch}(d)), p') \\
& \quad \text{return } (\text{combine}(d_1, d_2), p'') \\
\text{while } b \text{ do } P_1: & \quad d' \leftarrow \text{head}(p) \\
& \quad \text{check}(d' \supseteq \text{branch}(d)) \\
& \quad (d'', p') \leftarrow \Psi(P_1, [b_1](d'), \text{tail}(p)) \\
& \quad \text{check}(d'' \supseteq d') \\
& \quad \text{return } (\text{combine}(d, [b_1](d')), p')
\end{align*}
\]

The function Ψ is defined in Fig. 11. Here check checks that its argument is true, and fails otherwise. The function head also fails on empty input.

Lemma 9. If $d_1, d'_1 \in D$ and p is such that $d_1 \supseteq d'_1$ and $\Psi(P, d_1, p) = (d_2, p')$ for some $d_2 \in D$ and p' then also $\Psi(P, d'_1, p) = (d'_2, p')$ for some $d'_2 \subseteq d_2$.

Proof. Induction over the structure of the call tree of Ψ. If the invocation of Ψ makes no further calls to Ψ then P is a primitive statement p and $d_2 = [p](d_1)$, $d'_2 = [p](d'_1)$; $d'_2 \subseteq d_2$ because of the monotonicity of $[p]$. If further calls to Ψ are made then the arguments to these calls are computed monotonically from the value of d. Hence the results of these calls are also monotonic with respect to d. If the program P is a while-loop then Ψ contains some checks whether a value d' read from the proof p is larger than d or some value computed monotonically from d. If these checks pass then they pass also if d is made smaller. The right component of the return value of Ψ is just the “unconsumed” part of the proof p, it does not depend on d. □

Theorem 10. If $\vdash P : d_1 \rightarrow d_2$ is derivable and T is the corresponding derivation, then the invocation of $\Psi(P, d_1, \Psi(P, T, d_1) \cdot p')$ does not fail for any p', and it returns a pair of the form (d'_2, p') where $d'_2 \subseteq d_2$.

Proof. Let $p = \Psi(P, T, d_1)$. Induction over the structure of the inference tree T. Consider the last applied rule R. If R is (sub) then $\Psi(P, d_1, p) = \Psi(P, d'_1, p \cdot p')$ for some $d'_1 \subseteq d_1$ and the claim of the theorem follows from the induction assumption and Lemma 9. If R is (prim) then Ψ always succeeds, does not consume any part of the proof, and returns $[p](d_1)$ which is less than or equal to d_2 by Theorem 7. If R is (seq) and $P_1; P_2$ then Ψ is first invoked on P_1; by the induction assumption, this invocation consumes precisely the prefix $\Psi(P_1, T'_1, d_1)$ of the proof and returns an abstract value $d'' \in D$, such that $d'' \subseteq d'_1$. $\vdash P_2 : d' \rightarrow d_2$ and T'_2 is the corresponding inference tree. Afterwards Ψ is invoked on P_2 and the invocation consumes the prefix $\Psi(P_2, T'_2, d')$, succeeds and returns an abstract value $d'_2 \subseteq d_2$ by the induction assumption and Lemma 9. Similarly, if R is (if) and P is if b then P_1 else P_2
then the invocation of \mathcal{B} on P_1 consumes precisely the prefix $\mathcal{B}(P_1, T'_1, [b]_t(d_1))$ and the following invocation of \mathcal{B} on P_2 consumes precisely the prefix $\mathcal{B}(P_2, T'_2, [b]_t(d_1))$ of the rest. This invocations return the abstract values d_1 and d_2 that are both less than or equal to some d', such that $\text{combine}(d_1, d') \subseteq d_2$. Hence \mathcal{B} returns a value $d_2' \subseteq d_2$. If R is (while b do P_1 then the first element d' of the proof must be such, that $d' \supseteq d$ (by the construction of $\mathcal{B}(P, T, d_1)$) and $\mathcal{B}(P_1 : [b]_t(d') \rightarrow d')$. By induction assumption, invocation of \mathcal{B} on P_1 succeeds, consumes the prefix $\mathcal{B}(P_1, T'_1, [b]_t(d'))$ of the proof, and returns some value that is less than or equal to d'. Hence the second check in \mathcal{B} succeeds as well. The invocation of \mathcal{B} returns $\text{combine}(d, [b]_t(d'))$ which is equal to d_2.

Theorem 11. If p is such that $\mathcal{B}(P, d_1, p) = (d_2', p')$, then $\vdash P : d_1 \rightarrow d_2$.

Proof. We use the proof p to construct an inference tree for $\vdash P : d_1 \rightarrow d_2$. The construction proceeds by induction over the structure of P. If P is a primitive statement p then \mathcal{B} on input P and d_1 returns $d_2' = [p](d_1)$ and $\vdash P : d_1 \rightarrow d_2$ can be inferred with the rule (prim). If P is $P_1 ; P_2$ then \mathcal{B} is successfully invoked on P_1 and d_1, returning d'; and then on P_2 and d', returning d_2. By the induction assumption, $\vdash P_1 : d_1 \rightarrow d'$ and $\vdash P_2 : d' \rightarrow d_2$ can be inferred, and a further application of the rule (seq) completes the inference of \mathcal{B}: $\vdash P : d_1 \rightarrow d_2$. If P is if b then P_1 else P_2 then \mathcal{B} is successfully invoked on P_1 and $[b]_t(d_1)$, returning d'_1; and then on P_2 and $[b]_t(d_1)$, returning d'_2. The value d_2 is equal to $\text{combine}(d_1, d'_1 \sqcup d'_2)$. By induction assumption, we can infer $\vdash P_1 : [b]_t(d_1) \rightarrow d'_1$ and $\vdash P_2 : [b]_t(d_1) \rightarrow d'_2$. An application of the rule (if) completes the inference of \mathcal{B}: $\vdash P : d_1 \rightarrow d_2$. If P is while b do P_1 then the first value d' in p must be greater or equal to d_1. When \mathcal{B} is invoked on P_1 and $[b]_t(d_1)$, it returns some $d'' \subseteq d'$, because the second check must also succeed. By induction assumption, $\vdash P_1 : [b]_t(d') \rightarrow d''$ can be inferred. We can now use the rule (sub) to infer $\vdash P_1 : [b]_t(d') \rightarrow d'$ and the rule (while) to infer $\vdash P : d_1 \rightarrow d_2$.

The checking algorithm \mathcal{B} actually “reads” the certificate p only if it encounters a while-loop in the program. It must remember the value d' as long as it verifies the loop body because the value of d' is used in a check after that. If space at the checking device is at premium then the proof may repeat the loop invariant d' after the loop for the proof of the loop body, i.e. we define $\mathcal{B}^*(\text{while } b \text{ do } P_1, T, d_1) = d' \cdot \mathcal{B}^*(P_1, T', [b]_t(d')) \cdot d'$ for the (while)-rule and as \mathcal{B} for other rules. Now \mathcal{B} no longer has to store d' while it verifies the loop body. But \mathcal{B}^* may cheat—it may make the two copies of d' different. To avoid this we let \mathcal{B} store a cryptographic message digest of the first copy of d' and compare it to the second copy. Although such logic does not eliminate the storage requirements completely, it considerably reduces them—a digest will typically require 160–256 bits [20], considerably less than the entire d'.

Let $H : \{0, 1\}^* \rightarrow \{0, 1\}^k$ be a collision-resistant hash function where k is typically 160 or 256 (as the arguments of H are arbitrary bit-strings, we assume that H can be applied to anything representable). Intuitively (see [21] for precise definitions) this means that it is very hard to find collisions for H—pairs (x_1, x_2) where $x_1 \neq x_2$ but $H(x_1) = H(x_2)$. Let $\mathcal{B}^H(\text{while } b \text{ do } P_1, d, p)$ denote the algorithm

\[
\begin{align*}
d' & \leftarrow \text{head}(p); \text{check}(d' \supseteq \text{branch}(d)); h \leftarrow H(d'); \\
(d'', p') & \leftarrow \mathcal{B}^H(P_1, [b]_t(d'), \text{tail}(p)); \tilde{d} \leftarrow \text{head}(p'); \text{check}(h = H(\tilde{d})); \\
\text{check}(d'' \subseteq \tilde{d}); & \text{return(\text{combine}(d, [b]_t(\tilde{d})), \text{tail}(p'))}
\end{align*}
\]

and let \mathcal{B}^H be defined like \mathcal{B} for other programs. Using more advanced integrity structures (authenticated search trees [5]), the space requirement per loop may be decreased even more (to the size of a single identifier, 2 or 4 bytes).

Theorem 12. There exists a polynomial-time algorithm K such that, if p, P and d_1 are such that $\mathcal{B}^H(P, d_1, p) = d_2$ but $\not\vdash P : d_1 \rightarrow d_2$ then $K^H(P, d_1, p)$ outputs a collision for H.

Proof. The algorithm K executes both $\mathcal{B}(P, d_1, p)$ (ignoring the second copy of loop invariants) and $\mathcal{B}^H(P, d_1, p)$ in a lock-step fashion up to the point where the data that they are accessing at this point differs for the first time. A step in either \mathcal{B} or \mathcal{B}^H is either a further call to \mathcal{B} or \mathcal{B}^H, a return-statement, or a check-statement, except the statement $\text{check}(h = H(\tilde{d}))$. This statement, as well as the computation of h or reading the first element of p do not constitute as separate steps, they are grouped with the following statement. We see that the only points where \mathcal{B} and \mathcal{B}^H actually access different variables are at the end of handling the programs of the form while b do P_1. Namely, in two last
statements \(\mathcal{B} \) makes use of the variable \(d' \) while \(\mathcal{B}^H \) uses \(\bar{d} \). Also, the first difference in the executions of cannot be the \textbf{return}-statement of that case, because if \(d' \neq \bar{d} \) then this is discovered already at the point where \(\mathcal{B} \) executed \textbf{check}(\(d'' \subseteq d' \)) and \(\mathcal{B}^H \) executed \textbf{check}(\(d'' \subseteq \bar{d} \)). If \(K \) stops the execution of \(\mathcal{B} \) and \(\mathcal{B}^H \) at a point where \(d' \neq \text{bar}d \), but the statement \textbf{check}(\(h = H(\bar{d}) \)) succeeded, then it has found two differing values—\(d' \) and \(\bar{d} \)—that are mapped to the same bit-string by \(H \). The algorithm \(K \) outputs the pair \((d', \bar{d})\). \(\square \)

6. Related work

Previous work on relating program analyses and type systems has focused on control-flow analyses (analyses that attempt to show that the program does not make an illegal step) [17,8,18,3]. These type systems have a more complex structure than the ones considered here and typically feature universally and existentially quantified implications (big meets and joins of implications). The type of a program fragment can contain as much information as the denotational abstract semantics of that fragment. In contrast, a type in our type system corresponds to just one point (pair of abstract states) in the graph of the abstract semantics.

The closest to our work is probably the work of Naik and Palsberg [13]. They consider the same language as we do and their abstract semantics can be cast in our terms as well. But they only consider the case where the underlying lattice \(D \) is a powerset (and they do not consider branch and combine functions). And similarly to the systems mentioned above, they employ quantified implications and a type again corresponds to the entire semantics.

The certification of typing of Section 5 is reminiscent of Necula’s and Lee’s proof-carrying code [14]. Whereas the preliminary versions included the whole proof (derivation tree) in the certificate, later work [15] has concentrated on including only the information that is expensive to determine; this is similar to only including some typing information for loops. The same approach is present in the \textit{lightweight bytecode verification} of Rose [19]—a control-flow graph-based approach where the labels of all back-edges are included in the certificate. An implementation and soundness and completeness proofs of this approach are given in [10]. The \textit{abstraction-carrying code} of Albert et al. [1] is promoting exactly the same idea, to make checking the result of a static program analysis easy by shipping the program together with a certificate containing the essential information.

The type systems for secure information flow presented in this paper are similar in their spirit to those of Andrews and Reitman [4] (a logic, really) and Amtoft and Banerjee [2] and more precise than those by Volpano et al. [22]. The reason is that, for us, a type is a pair of security class assignments to variables (corresponding to their security classes before and after a program run), while Volpano et al. insist (for reasons that escape us) that security classes of variables are invariant. During the revision of this paper we learned that a secure information flow type system very similar to ours has also been proposed recently by Hunt and Sands [9]. But their work does not describe any general method for obtaining type systems for data-flow analyses.

7. Conclusions and future work

We have shown how imperative data-flow analyses definable in a certain framework can be equivalently cast as type systems, proceeding from a very basic idea about what a type of an imperative program ought to be. The resulting type systems are, to our judgement, extremely intuitive and well-motivated, so we believe we have once more witnessed how useful it can be to have the basic concepts right in any theory. We also believe that our type systems are practically applicable in certified software.

As future work, we plan to further explore the limits of our analysis framework (especially the applications of branch and combine functions) and to see if the framework can be liberalized in interesting ways while keeping the type systems simple. We also plan to study systematic description of data-flow analyses in terms of logics. Yet another direction will be type systems corresponding to analyses for a language with procedures. Here we hope to be able to reuse the main idea of the standard Hoare logic treatment of procedures.

Acknowledgements

We are grateful to the anonymous referees for their suggestions and remarks. This research was partially supported by the Estonian Science Foundation grants no. 5567 and 6095 and by the EU FP5 IST thematic network project APPSEM II.
References

