2nd ed

Donald Ervin

Oren

**Publisher : **
Addison-Wesley Publishing Co. - Reading, Mass.

**Bibliographic : **

- Hardcover
- ISBN: 0-201-55802-5
- © 1994
- xiii, 657 p. : ill. ; 24 cm.
- Dewey No.: 510 20

- Mathematics. * Computer science -- Mathematics.

This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline.

Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study.

Major topics include:

- Sums
- Recurrences
- Integer functions
- Elementary number theory
- Binomial coefficients
- Generating functions
- Discrete probability
- Asymptotic methods

**CONTENTS : **

**Chapter 1 Recurrent Problems**
1.1 The Tower of Hanoi
1.2 Lines in the Plane
1.3 The Josephus Problem
Exercises

**Chapter 2 Sums**
2.1 Notation
2.2 Sums and Recurrences
2.3 Manipulation of Sums
2.4 Multiple Sums
2.5 General Methods
2.6 Finite and Infinite Calculus
2.7 Infinite Sums
Exercises

**Chapter 3 Integer Functions**
3.1 Floors and Ceilings
3.2 Floor/Ceiling Applications
3.3 Floor/Ceiling Recurrences
3.4 'mod': The Binary Operation
3.5 Floor/Ceiling Sums
Exercises

**Chapter 4 Number Theory**
4.1 Divisibility
4.4 Factorial Factors
4.5 Relative Primality
4.6 'mod': The Congruence Relation
4.7 Independent Residues
4.8 Additional Applications
4.9 Phi and Mu
Exercises

**Chapter 5 Binomial Coefficients**
5.1 Basic Identities
5.2 Basic Practice
5.3 Tricks of the Trade
5.4 Generating Functions
5.5 Hypergeometric Functions
5.6 Hypergeometric Transformations
5.7 Partial Hypergeometric Sums
5.8 Mechanical Summation
Exercises

**Chapter 6 Special Numbers**
6.1 Stirling Numbers
6.2 Eulerian Numbers
6.3 Harmonic Numbers
6.4 Harmonic Summation
6.5 Bernoulli Numbers
6.6 Fibonacci Numbers
6.7 Continuants
Exercises

**Chapter 7 Generating Functions**
7.1 Domino Theory and Change
7.2 Basic Maneuvers
7.3 Solving Recurrences
7.4 Special Generating Functions
7.5 Convolutions
7.6 Exponential Generating Functions
7.7 Dirichlet Generating Functions
Exercises

**Chapter 8 Discrete Probability**
8.1 Definitions
8.2 Mean and Variance
8.3 Probability Generating Functions
8.4 Flipping Coins
8.5 Hashing
Exercises

**Chapter 9 Asymptotics**
9.1 A Hierarchy
9.2 O Notation
9.3 O Manipulation
9.4 Two Asymptotic Tricks
9.5 Euler's Summation Formula
9.6 Final Summations
Exercises

**A Answers to Exercises *
B Bibliography (p. 604-631) *
C Credits for Exercises
Index * List of Tables **

Changed 20/01/1997. Comments: monika@cs.ioc.ee