Linear types can change the world!

Philip Wadler

University of Glasgow”

Abstract

The linear logic of J.-Y. Girard suggests a new type system for functional
languages, one which supports operations that “change the world”. Values be-
longing to a linear type must be used exactly once: like the world, they cannot be
duplicated or destroyed. Such values require no reference counting or garbage col-
lection, and safely admit destructive array update. Linear types extend Schmidt’s
notion of single threading; provide an alternative to Hudak and Bloss’ update
analysis; and offer a practical complement to Lafont and Holmstrom’s elegant
linear languages.

An old canard against functional languages is that they cannot change the world:

they do not “naturally”

cope with changes of state, such as altering a location in memory,
changing a pixel on a display, or sensing when a key is pressed.

As a prototypical example of this, consider the world as an array. An array (of type
Arr) is a mapping from indices (of type Tr) to values (of type Vul). TFor instance, the
world might be a mapping of variable names to values, or file names to contents. At
any time, we can do one of two things to the world: find the value associated with an
index, or update an index to be associated with a new value.

Of course it is possible to model this functionally; we just use the two operations

lookup : Iz — Arr — Val,
update : Iz — Val — Arr — Arr.

A program that interacts with the world might have the form

main : Args = Arr — Arr,
where the first parameter is the list of arguments that make up the command line, the
second parameter is the old world, and the result is the new world. An example of a

program is

main files a = update “stdout” (concat [lookup i a | i <+ files]) a.

“Author’s address: Department of Computing Science, University of Glasgow, (G112 8QQ, Scotland.
Electronic mail: wadler@cs.glasgow.ac.uk.

Presented at IFIP TC 2 Working Conference on Programming Concepts and Methods, Sea of Galilee,
Israel, April 1990; published in M. Broy and C. B. Jones, editors, Programming Concepts and Methods,
North Holland, 1990.

This performs the same operation as “cat™ in Unix: it writes to the file “stdout” the
result of concatenating the contents of each file named in the list files. (The example
uses a list comprehension notation familiar from languages such as Miranda’ [Tur85] or
Haskell [HWSS].)

So the canard is indeed a lie. But it is not completely without basis, because there
is something unsatisfactory with this way of modelling the world. Namely, it allows
operations that duplicate the world:

copy a = (a,a),
or that discard it:
kill a = ().

Neither of these correspond to our intuitive understanding of “the world”: there is one
world, which (although it may change) is neither duplicated nor discarded.

This paper discusses the use of a linear type system, based on the linear logic of J.-Y.
Girard [Gir87, GLT89]. Values belonging to a linear type must be used exactly once:
like the world, they can be neither duplicated nor discarded.

“No duplication” helps to guarantee efficient implementation. For example, it guar-
antees that it is safe to update an array destructively, by overwriting the given index
with the given value. Similar efficiencies can be achieved when updating a value that
corresponds to a file system. If a value is represented by a linked list, then knowing that
one holds the only pointer to the list may enable efficient re-use of the list cells.

“No discarding” is equally important. In most implementations of a functional lan-
guage it is essential to recover space that is discarded by the use of reference counting
or garbage collection. Values of a linear type avoid this overhead. As we shall see, this
doesn’t mean that one cannot release storage used by a linear value; rather, it means
that both allocation and deallocation of linear values are explicitly indicated in the
program text.

Linear types enforce useful design constraints. Imagine a denotational semantics of a
programming language. We would expect the store not to be duplicated or discarded
there would be something odd about a semantics that did either of these. Giving the
store a linear type guarantees these properties.

Similarly, if the file system is to be represented by a single value (along the lines out-
lined above), then it is useful to give the file system a linear type. Among other things,
this would trap some errors that novice programmers might make, such as throwing
away the entire file system. (An early proposal for Haskell I/O treated the file system
as a value. It was rejected, in part, because no mechanism like linearity was available.)

The system described here divides types into two families. Values of linear type have
exactly one reference to them, and so require no garbage collection. Values of nonlinear
type may have many pointers to them, or none, and do require garbage collection.

Pure linearity is, in fact, a stronger constraint than necessary. It is ok to have
more than one reference to a value, so long as the value is being “read”; only when the
value is “written” (e.g., destructively updated) is it necessary to guarantee that a single
reference exists.

"Miranda is a trademark of Research Software Limited.



For example, the “cat” program given previously is not legal as it stands. It should
be written

main files a = let! (a)v = concal [lookup i a | i« files] in
update “stdout” v .

This allows multiple read accesses to the file system (one for each file in files), all of
which may occur in parallel; but all of which must be completed before the “write”
access (to “stdout”).

The language used in this paper is lazy. The one exception is the “let!” construct,
“=" before commencing evaluation of the
term after the “in”. This sequencing is essential to gnarantee that all reads of a structure
are completed before it is updated. (In this example, it also has the unfortunate effect
of removing the opportunity for lazy evaluation to cause reading the inputs and writing
the output to act as coroutines.)

which completely evaluates the term after the

The name “single threading” was coined by Schmidt to describe the situation where the
store of a denotational semantics satisfies the “no duplication” property, and he gave
syntactic criteria for recognising when this occurs [Sch82, Sch85]. However, Schmidt’s
criteria say nothing about the “no discarding” property, and are designed for use with
a strict, rather than a lazy, language. Further, Schmidt allows only one single-threaded
value (i.e., the store) while the linear type system allows any number (e.g., two different
destructively updated arrays). Nonetheless, the linear type system was closely inspired
by Schmidt’s work. In particular, the “let!” construct was added so that it would be
straightforward to transform any single-threaded semantics (well, any one that doesn’t
discard its store) into an equivalent program with a linear store type.

A great deal of work has gone into compile-time analysis to determine when de-
structive updating is safe, notably by Bloss and Hudak [Blo89, BHY89, Hud86]; older
analysis techniques for determining when list cells can be reused go back to Darlington
and Burstall [DB76]. Analysis techniques have the advantage that destructive updating
can be inferred whether the user indicates it explictly or not. With linear types, the
user must decide which types are linear, and explicitly use let! where it is appropriate.
Conversely, linear types have the advantage that the types make the user’s intention
manifest. With analysis techniques, a small change to a program might (by fooling the
analysis) result in an unintended, large change in execution efficiency whose cause is
difficult to trace.

The type system used in this paper is monomorphic. It is straightforward to extend
it to a polymorphic language with explicit type applications, as in the Girard-Reynolds
calculus [Gir72, Gir86, Rey74, Rey83, Rey85]. However, it is not clear whether it can be
extended to the more common Hindley-Milner-Damas inference system [Hin69, Mil78,
DMB82] used in languages such as Miranda and Haskell. This is one area for future
research.

Other computer scientists have also been struck by the potential of a type system based
on Girard’s linear logic.

A very elegant linear language has heen developed by Lafont [Laf88], and a variant
of it by Holmstrom [Hol88]. These systems have the amazing property that every value
has exactly one reference to it, and so garbage collection is not required at all. This
seems too good to be true, and perhaps it is: since there is never more than one pointer

to a value, the results of compulations cannot be shared. In fact, sharing is allowed (the
so-called “of course” types) but shared values are dealt with in two ways, neither of
which is as efficient as one would like:

e The first way is to represent the shared value by a pointer to a closure. This is
how Lafont’s system implements values of functional type, and how Holmstrom’s
system implements all values. Evaluating a closure does not cause the closure to
be overwritten. Hence, this implementation is more like call-by-name than call-
by-need: any shared value will be recomputed each time it is used, which can be
staggeringly inefficient.

e 'I'he second way is to completely copy a shared value each time a reference to it is
copied. This is how Lafont’s system implements values of base type, such as lists.
This is much more efficient than the first method, but it is still far less efficient
than the usual conception of shared pointers.

While marvelously elegent and worthy of study, these systems seem unsuited for practical
use.

The system described here is inspired in part by Lafont and Holmstrom’s work, but
it differs in three ways:

o Lafont and Holmstrom use a single family of types, augmented with the “of course”
type constructor. The system given here uses two completely distinct families of
types, one linear and one nonlinear. This is less elegant, as it means most of the
typing rules appear in two versions, one for each family. But it means one has the
advantage of unique reference, for linear types, while retaining the efficiency of
sharing, for nonlinear types. In particular, none of the efficiency problems above
arise.

e Lafont and Holmstrom use syntaxes rather different than that of the lamhbda cal-
culus, and a non-trivial translation is required to transform lambda calculus terms
into terms in their languages. In contrast, the traditional lambda calculus is a
subset of the language described here.

o Lafont and Holmstrom have no analogue of the “let!” construct, and hence do
not support some useful ways of structuring programs. In particular, there is no
obvious way to translate Schmidt’s single-threaded programs into linear programs
in the style of Lafont and Holmstrém, but there is a straightforward translation
into the type system in this paper.

Another type system, more loosely inspired by linear logic, has been developed by
Hudak and Guzman [HG89]. The two were developed concurrently and mostly inde-
pendently, although the exact form of “let!” used here was partly influenced by their
work. The goals of their work are more ambitious, and as a result their type system is
(perhaps) more complex. Further work is needed to understand the relation between the
two systems. One clear difference is that their system guarantees the “no duplication”
property, but not the “no discarding” property; hence in their system deallocation of
linear values is not always explicit.

The remainder of this paper is organised as follows. Section 1 describes a conventional
typed language. Section 2 modifies this language for linear types, and Section 3 adds



back in nonlinear types. Section 4 introduces the “let!” construct. Section 5 presents
an extended example involving arrays, showing how to implement an interpreter for a
simple imperative language. Section 6 concludes.

1 Conventional types

This section presents the definition of a conventional typed lambda calculus, that is,
one without linear types. The definition will be adapted to linear types in the following
sections.

The only novel feature of the calculus in this section is an unusual form of data
type declaration. That is, it is unusual for theorists; in practice, a quite similar form of
declaration is used in languages such as Miranda and Haskell.

Assume there is a fixed set of base type declarations. Kach declaration takes the

form
K=0C Ty ... T/k, ‘ ‘ Co Toy - Tnkn ’

where K is a new base type name, the Cj are new constructor names, and the 7j; are
types (called the immediate components of K). For example, here are declarations for
booleans and lists of Val, where Val is another base type:

Bool = True | False ,
List = Nil| Cons Val List .

The immediate components of List are Val and List.
A type is a base type or a function type:
T = K

| (U—=V).

Here K ranges over bhase types and T, U, V range over types.
A term is variable, abstraction, application, constructor term, case term, or fixpoint:

t = =z
| (Az:U.w)
| ()
L (C )
| (case uof Cy ayy .ooam, = v |-+ | Cu @t oo gy, = v)
I

Here 2 ranges over variables and {, u, v range over terms. Following convention, paren-
theses may be dropped in (7" — (U — V)) and ((¢ u) v).
Let A, B range over assumption lists. An assumption list associates variables with
types:
A = gy, 0 T

Write z ¢ A to indicate that z is not one of the variables in A.

A typing is an assertion of the form A ¢ : T. This asserts that if the assumptions
in A are satisfied (that is. 2; has type T; for each z; : T; in A) then ¢ has type T. The
type system possesses unicity of type: for a given A and ¢ there is at most one 7' such
that AF¢:T.

Typings are derived using the rules shown in Figure 1. As usual, these rules take
the form of a number of hypotheses (above the line) and a conclusion (below the line)
that can be drawn if all the hypotheses are satisfied. The rules concerning base types
include an additional hypothesis displaying the declaration of the type, shown in a box
above the rule. The rules come in pairs: the —7 rule introduces a function (by a
lambda expression), and the —& rule eliminates a function (by applying it); the KT
rule introduces a value of a base type (by constructing it), and the K€ rule eliminates a
value of a base type (by a case analysis). There are also rules for variables and fixpoints
(VAR and FIX).

As an example, here is a function two append two lists, written out in painful detail:

fiz (Aappend : List — List — List.
Aws ¢ List. Ays : List.
case zs of
Nil — ys
Cons o' ws' — Cons 2’ (append xs' ys) )

This term is well-typed, with type Lisi — List — List.

2 Linear types

In the conventional type system just described, each occurrence of a variable in an
assumption list, # : T, can be read as permission to use the variable z at type T.
Furthermore, it can be used any number of times: zero, one, or many. Hence

z: Arr k()2 Unil
is a valid typing, even though the assumption z : Arr is used zero times. Similarly,
v:Arr b (z,2) 0 Are x Arr

is also valid, even though the assumption a : Arr is used twice.

The key idea in a linear type system is that each assumption must be used exactly
once. Thus both of the above typings become illegal. As a first approximation, if
AF 1 : T isavalid typing in a linear type system, then each variable in A appears
exactly once in t.

Linear types are written differently from conventional types. Base types are written
i, and function types are written U/ —o V. (In linear logic, by default an assumption
T must be used exactly once; if an assumption is to be discarded or duplicated it must
be written ! T. The symbol for linear types types was chosen to reflect this.)

Thus, the new grammar of types is:

T == iK
| (U—V).
The grammar of terms is changed similarly:
t o=
| (l)\x U. v)
| (it w)
| (iCt ... &)
| (case u of iCyayy gy, =y | [, w0,



VAR

—7

Ao :Tra: T

Ajz:UFwv: V zd A

AFQa:U.v): U=V

& AR U=V AFu:U

AR (tu): V

|I\”:... | C T, .. T,| \
At T,
KT AbF b Ty
AF(Ct; . ) K
K=0C, Ty .. Ty, | | Co Tos oo T,

AFu: K

Ay gy 2 Tyyy oo ey Ty Fog 0 V

K¢& A Tny ° Trll', coey Tnk, o Tn/cn F Up * V

Al (case u of C; z;; ..

LTk, U ‘ ‘ Co Ty ..

Fix AFt: T =T

Ab(fixt): T

Tk, = Up)

%

€4 ¢ 4

Figure 1: Conventional typing rules

=1

VAR
r:Tha:T

o7 Az Ubkov: V z¢ A
AR (dz:U.v): U—oV

o0& Abt:U—oV BtFru:U
ABF (itu):V

K= [IC T, .. T[]

A B T,

IKT ApF 0 Ty
A AMFGOL )k

l[(ZIC] TU le, ‘ ‘ iCYl Tn] Trlkn

AFu: K
B,y Ty ooy agy s T, Fog 0 V

iK€ By wr i Turs ooy iyt Ty b0 V v ¢ 1B
A, BF (case u of iCi oy .owpg, = v | |00 Tt oo Ty, = V) 2 V

Figure 2: Rules for linear types

There are no fixpoints in the linear language. A linear value should be accessed
exactly once, but fiz t is equivalent to ¢ (¢ (¢ --+)).

Fach of the typing rules must now bhe modified accordingly. The new rules are
summarised in Figure 2.

Consider the old VAR rule:

VAR Ava:ThHa:T

Any assumption in the list A is unused in the typing, and hence this is no longer legal.
The new rule is:

VAR x:TkFa: T

Here the single assumption on the left is used exactly once on the right.

8



Next, consider the old =& rule:

AFL1: U=V AbFwu:U

[sd
e AF(tu):V

Any variable that appears in A may appear in both ¢ and u, and this should be prohib-
ited. The new rule is:
AFt: U —oV BFu:U

¢ ABF (itu):V

Here both A and B range over assumption lists, and A, B stands for the conjunction of
the two lists. Tt is easy to see that if each variable in A occurs exactly once in ¢, and if
each variable in B occurs exactly once in u, then each variable in A, B occurs exactly
once in t u.

The |KZ rule is modified to refer to k£ assumption lists, A;,..., Ax. On the other
hand, the iK' & rule is modified to refer to only two assumption lists, A and B. The
same assumption list B is used for each of the branches of the case; this is sensible
because exactly one branch will be executed. This, incidentally, is why the claim that
each variable appears exactly once is only approximate; in a case term a variable may
appear exactly once in each branch.

We can define some familiar combinators by writing lx, Bxyz, and Cxyz as abbre-
viations for

Ix = jAz:X.x2
Bxyz = iIM:Y —oZ idg: X o Y.ide: X.if (ig 2)
Cxyz = IM:X oY —oZ y: Y. idae: X i(if ) y)

vielding the well-typings

Flx : X —oX
FBxyz : (Y—o0Z)—o(X—o0Y)o0X-—0Z
FCyxyz : (X—oV —o0Z)—o(Y—o0X-0Z).

On the other hand, if we define

Kyy = idz:X.idy: V.2
Sxyz = IM:X—oY—0Z.idg: X —oVY.ide : X.i(if 2) (ig z)

then Kxy and Sxyz have no well-typings in the linear system; K bhecause it discards y,
and S because duplicates . More generally, any term that translates into a combination
of the |, B, and C combinators is well-typed in this system, while any term requiring K
or S for its translation is not.

In the linear system, each operation that introduces (and allocates) a value is paired
with exactly one operation that eliminates (and deallocates) that value. The introduc-
tion operations (abstraction and construction) create values to which a single reference
exists. This reference may never be duplicated or discarded, so the elimination opera-
tions (application and case) act on values to which they hold the sole reference. Hence,
after an application the storage occupied by the function may be reclaimed, and after a
case analysis the storage occupied by the node analysed may be reclaimed. No reference
counting or garbage collection is required.

This efficiency is achieved by restricting the language severely: each variable that is
bound must be used exactly once. This is perfect for variables corresponding to, say,
a file system or a large array; but it is not reasonable to impose such a restriction on
a variable containing. say, an integer. Thus, the type system needs to distinguish two
sorts of values: those that may not be duplicated or discarded, and those that may.
This extension is the subject of the next section.

3 Nonlinear types

The linear language of the previous section is wonderfully efficient, but woefully lacking
in expressiveness. 1o recover the power of a sensible programming language, we rein-
troduce the types K and U — V. This yields a langnage with two families of types:
linear types, iK and U —o V, and nonlinear types, K and U — V. Values of linear
types may not he duplicated or discarded; values of nonlinear types may.

If T is a linear type, then an assumption of the form z : T is a permission, and a
requirement, to use the variable = exactly once. Tt is a restrictive assumption. May 1
discard 27 jNo! May I duplicate 27 jNo!

If 7' is a nonlinear type, then an assumption of the form z : 7' is a permission to use
@ zero, one, or many times. It is a generous assumption. May [ discard 27 Of course!
May I duplicate 2?7 Of course!

(Similarly, in linear logic an assumption may not be discarded or duplicated unless
it is of the form 7. The !is pronounced “of course”. But be warned: the formula
U — V =(1U)—o V that holds in linear logic is nof appropriate to this paper; a better
guide would be U = V = YU — V).)

There are now two forms of base type declaration, linear and nonlinear:

(K = 1C, Ty o Toy |- [1C Ty - T,
K = G Ti oo Ty |+ | Co Tug oo T,

In the former, the immediate components may be any types, while in the latter case
they must be nonlinear. In other words, a nonlinear data structure must not contain
any linear components. Thus,

iList = iNil |iCons iVal iList,
ilist = iNil |iCons Val iList, and
List = Nil | Cons Val List

are all ok, but

List = Nil| Cons iVal List

is not ok.

This restriction is easy to understand. A value of linear type must be accessed exactly
once. Say that a value of nonlinear type contained a pointer to it. If the nonlinear value
was duplicated, the linear value would be accessed once for each duplication; it would
be virtually duplicated. If the nonlinear value was discarded, the linear value would
never be accessed; it would be virtually discarded. Hence, no nonlinear value may point
to a linear value.



For example, the following fragment should be well-typed if zs has type Lisi:

case zs of --- | Cons 2’ 2s' —

case zs of --- | Cons 2" xs
I "

" s

Under the illegal declaration of List above, both 2’ and z” would have the linear type
iVal, even though they are both bound to the same value. Any operation that took
advantage of the linear type of z’ (to reuse its storage, or to update it destructively)
would create a “side effect” on 2”. So much for referential transparency!

Fortunately, the linear type system disallows this. With the legal declaration of the
type List, both 2’ and z” have the nonlinear type Val, and there is no problem. On the
other hand, if zs has the linear type iList, then the fragment would be illegal because
it uses s twice.

The grammar of types is now

T iK
K
(U—V)
(U= V).

Each type is deemed linear or nonlinear, depending on its topmost constructor. Hence
(T —o (U — V)) is linear, while (T — (U —o V)) is nonlinear.

The grammar of terms is similarly extended. To all of the term formers in Section 2
are added all of the term formers in Section 1. Thus (iAz @ U. v) is a term of type
U—oV, and (Az : U. v) is a term of type U — V. The typing rules consist of all those
in Figure 2 together with the additional rules in Figure 3.

Mathematically, the notion that values of a nonlinear type may be discarded or
duplicated is represented by the rules:

Abu: U

KILTL, ————=———— nonlinear 7',

Az TrHu: U

COPY Ac:Tio:Thu:U nonlinear T'
Aa:Tru: U ’

The KILL rule allows a value of type T to be discarded, while the COPY rule allows
a value of type T to be duplicated, so long as 7' is a nonlinear type. To formulate
the copry rule neatly, assumptions of the form z : 7" are allowed to appear possibly
multiple times in an assumption list when T is a nonlinear type; thus assumption lists
are multisets rather than sets. Note that the VAR rule of Figure 2 applies to both linear
and nonlinear types.
The nonlinear version of the function introduction rule is:
Az UFv: V

—T 1F ()\l T 0 UV x ¢ A, nonlinear A.

This is identical to the old rule, except for the addition of a side condition requiring that
the assumption list A be nonlinear. An assumption list is nonlinear if each assumption

11

K&

nonlinear 1'

ki AFw: U
Az Thu: U
copy AT 2 ThFu:

—7

U

Az:ThHu: U

Ajz:Ukv:V

nonlinear 7'

z ¢ A, nonlinear A

AFQa:U. v): U=V

& AFt:U—V BFu:U
ABF(tu:V
‘[{:...‘C T,...Tc |-+, nonlinear T;
A Bt T
KT Ak F 1y - ,/k
Ay ooy Ak B (C oty oo )t K
K=C Ty ... Ty, | 1C, Tur oo Topys nonlinear 71}

B,

B, 2, :

AFu: K

Ty ooy Ty Fo 0 V

Toty ooy Tay @ T, E v 2 V

A, Bt (case u of C; ayy ...

FIX AL T—>T

AF (fix t): T

Tik, — U1 ‘ ‘ Cn Tnt - Tnk, —* 1‘71) :

v

.ZL'J'%J

Figure 3: Rules for nonlinear types



2; « 17 in it has a nonlinear 7;. No condition is placed on U or V by this rule; they
may be either linear or nonlinear.

This restriction follows from the principle, established above, that a nonlinear value
must not contain pointers to linear values. A function value is a closure that contains a
pointer to an environment binding each variable in A. Hence a nonlinear function can
only be introduced in an environment A that contains only nonlinear types.

For example, if iX is a linear type and Y is nonlinear, then

Az X Ay YV.2):iX =V = iX

is not a well-typing. (It is an easy exercise to show that if it were well-typed then any
linear value could be duplicated.) On the other hand, both of

Faz:iX idy: Vo) iX = ¥V —oiX,
FAy:Y. dz:iX.z): YV 2 iX = IX

are ok, the first because —oZ places no constraint on the assumption list, and the second
because —7 places no constraint on the argument or result type.
Returning to a previous example, here is another version of the append function:

fix (Aappend : iList —o iList —o List.
Axs zilist. Ays : ilList.
case zs of
iNil — ys
iCons 2’ xs' — 1Cons o' (i(lappend as') ys) )

This is well-typed under either declaration for iList given above. Since both arguments
are linear, if the first argument is a iCons cell then this cell may be deallocated imme-
diately. It requires only a modestly good compiler to notice that the best thing to do
with this cell is not to return it to free storage, but to reuse it in building the result.
An only moderately better compiler would notice that the head of this cell may be left
unchanged. Only the tail of the cell needs to be filled in with the result of the recursive
call to append. In fact, that recursive call will almost always return the same value that
is there already (the exception being when it is iNil), and a little loop unrolling could
result in a very efficient version of append indeed but it might require a less modestly
good compiler writer to notice that.

4 Read-only access

In order for destructive updating of a value to be safe, it is essential that there be only
one reference to the value when the update occurs. In the linear type system, this is
enforced by guaranteeing that there is always exactly one reference to the value. This
restriction is stronger than necessary. It is perfectly safe to have more than one reference
to a value temporarily, as long as only one reference exists when the update is performed.

The situation here is similar to the well-known “readers and writers” problem, where
access to a resource is to be controlled. Many processes may simultaneously have read
access, but a process may have write access only if no other process has access (either
read or write) to the resource.

The two sorts of access are modelled using two types. A linear type corresponds to
write access, and a nonlinear type corresponds to read access: permission to write must
be unique, but permission to read may be freely duplicated.

A new form of term is introduced for granting read-only access:

let! (z) y=wuinv.

This is evaluated similarly to a conventional let term: first u is evaluated, then ¥ is
bound to the result, then v is evaluated in the extended environment. But there are
three differences from a garden-variety let.

The first is that within u the variable & has nonlinear type, while within v the
variable z has linear type. That is, during evaluation of wu, read-only access is allowed
to the value in 2.

The second is that evaluation of u must be carried out completely before evaluation
of v commences this is sometimes called hyperstrict evaluation. For instance, if u
returns a list, then all elements of this list must be evaluated. This is required in order
to guarantee that all references to @ within u are freed before evaluation of v commences.

The third is that there are some constraints on the type of @ and u. It must not
be possible for u (or any component of u) to be equal to z (or any component of z)—
otherwise, read access to « (or a component of z) could be passed outside the scope of
u. This condition is made precise below.

Define the componenis of a type to be itself and, if it is a base type, all compo-
nents of its immediate components. We will restrict our attention to the case where all
components of the type of z are base types.

Given a type T, the corresponding nonlinear type !'T is derived [rom it as follows.
If iK is a linear base type defined by

iK=iC, Tyy ... Ty |-+ |iCy Tor - Tap,,
then i/ is the nonlinear base type K defined by
K=C Ty ..dTy, || Co ' Ty o AT,

where the components of K are recursively converted. If K is a nonlinear base type,
then 'K is identical to K.

Let T" be the type of x, and U be the type of u. We must ensure that u cannot
“smuggle out” any component of z that is linear. This is guaranteed if no linear com-
ponent of T has a corresponding nonlinear component in U, and if no component of
U is a function type. (Functions are disallowed since a function term may have z or a
component of z as a free variable.) If this holds, say that U is safe for T.

Finally, the required typing rule is:

Az ' TEw: U
Boa: T y:UkFv:V
A, Bye: TE(let! () y=uinv): V

LET! U safe for T

An example of the use of let! appears in the next section.
Tt is easy to allow read-only access to several variables at once; simply take
let! (2;,20,....0,) y=uin v
as an abbreviation for

let! (z;) y = (let! (22,...,2,) ¥ =win y') in v .

14



5 Arrays

5.1 Conventional arrays

Before considering how to add arrays to a linear type system. let’s review the use of
arrays in the conventional type system.

An array associates indices with values. We will fix the index and value types, and
write Arr for the type of arrays with indices of type [z and values of type Val. There
are three operations of interest on arrays:

alloc : Arr,
lookup : Tx — Arr — Val,
update : Iz — Val — Arr — Arr.

Here alloc allocates a new array (with all entries set to some fixed initial value);
lookup i a returns the value at index ¢ in array a; and update i v a returns an ar-
ray identical to a except that index ¢ is associated with value v. (In practice, the array
type may be parameterised on the index and value types, and the new array function
may take additional arguments to determine index bounds and initial values; but the
simpler version suffices to demonstrate the central ideas.)

This section will use the small interpreter shown in Figure 4 as a running example.
This is written in an equational notation familiar from languages such as Miranda and
Haskell; it is easy to translate the equations into lambda and case terms.

The interpreter can be read as a denotational semantics for a simple imperative
language. Variable names are identified with type [z, the values stored in variables are
identified with type Val, and stores (which map variable names to values) are identified
with type Arr.

Three data types correspond to the abstract syntax of expressions, commands, and
programs.

e An expression is a variable, a constant, or the sum of two expressions. The se-
mantic function corresponding to an expression takes an array into a value.

e A command is an assignment, a sequence of two commands, or a conditional. The
semantic function corresponding to a command takes an array into an array.

e A program consists of a command followed by an expression. The semantics
corresponding to a program is a value.

The interpreter satisfies Schmidt’s single-threading criteria. Thus, it is safe to im-
plement the updaie operation in a way that re-uses the store allocated for the array.
(This is to be expected, since the array represents the store of an imperative language.)
However, how is the implementation to determine when it is safe to implement update in
this way? Succeeding sections will show how linear types can be used for this purpose.

5.2 Linear arrays

Now that the framework of the linear type system is in place, adding primitives for
arrays is relatively straightforward. This section will show how to add arrays when

Fapr = Var I | Const Val | Plus Fapr Expr

Com = Asgn Ir Expr | Seq Com Com | If Expr Com Com
Prog = Do Com Ezpr

expr s kapr — Arr — Val

expr (Var i) a = lookup i a

expr (Const v) a = v

expr (Plus e; ¢;) @ = eapr ey a+ eapr ¢; a

com : Com — Arr — Arr

com (Asgn i ¢) a = update i (expr e a) a

com ¢; (com ¢; a)
if expr e « = 0 then com ¢; a else com ¢; a

com (Seq ¢y ¢;) a
com (If € ¢y ¢;) a

prog : Prog — Val
prog (Do ¢ ¢e) = expr ¢ (com c alloc)

Figure 4: A simple interpreter

“read only” access is not used. This leads to a small problem, which will be resolved by
the use of “read only” access in the next section.

As before, an array type maps indices into values. The array type is linear, and
so is written {Arr. For the simplest version of arrays, the index and value types are
nonlinear, and so are written /z and Val.

We will require a data type that pairs a Val with a iArr. This may be declared by

iValArr = iMkPair Val iArr,

but for readability we will write Val @ iArr instead of i ValArr, and (v, a) instead of
iMEPair v a, and let (v,a) =t in u instead of case ¢ of iMkPair v a — u.
The four operations on linear arrays are:

alloc s iArr,

lookup : Tz — iArm — Val @ iArr,
update Iz — Val — iArr — iArr,
dealloc : Val @ iArr — Val.

The alloc and update operations are as before. The new lookup operation, being passed
the sole reference to an array, must return a reference to the same array when it com-
pletes. Otherwise, since arrays cannot be duplicated, an array could only be indexed
once, and then would be lost forever! The linear type discipline requires that values of
a linear type be explicitly deallocated, and this is the purpose of the dealloc operation.

The meaning of these operations can bhe explained in terms of the old operations as



Fapr = Var I | Const Val | Plus Fapr Expr

Com = Asgn Ir Expr | Seq Com Com | If Fxpr Com Com
Prog = Do Com Ezpr

expr s Rapr — iArr — Val @ iArr

expr (Var i) a = lookup i a

expr (Const v) a = (v.a)

eapr (Plus ¢g ¢;) a = let (v, a9) = expr ¢y a in

let (vs,a;) = expr ¢; ap in
(g 4+ vi,a1)

com o Com — iArr — (Arr

com (Asgn i €) a = let (v,a’) = expr € a in update i v o
com (Seq ¢g ¢;) a = com ¢; (com ¢q a)

com (If € ¢y ¢;)a = let (v,a’) = expr e a in

if v = 0 then com ¢, o' else com ¢; o

prog : Prog — Val
prog (Do c €) = dealloc (expr e (com ¢ alloc))

Figure 5: A simple interpreter, version 2

follows:
alloc = allocyy ,
lookup i a = (lookup,q a i, a),
update it v a = wupdateyy 1 v a,
dealloc « = let (v,a) =2 in v.

However, we could not write this program to define the new operations; they must be
defined as primitives. (The definition of lookup is illegal because although a is linear
it appears twice on the right-hand side; and the definition of dealloc is illegal because
although « is linear it appears no times on the right-hand side.)

A new version of the interpreter using the linear array operations is shown in Figure 5.
Unfortunately, this second version is a little more elaborate than the first. because each
application of lookup (and, hence. also each application of expr) requires additional
plumbing to pass around the unchanged array. T'his is particularly unfortunate in the
Plus case of the definition of expr. It should be possible to evaluate the two summands,
e; and €;, in parallel, but it is necessary here to specify some order, in this case ¢
before ¢;.

The linear type system is “too linear” in that it forces a linear order to be specified
for operations (like Plus in expr) that should not require it. The next section shows
how “read only”™ access can solve this problem.

Fapr = Var I | Const Val | Plus Fapr Expr

Com = Asgn Ir Expr | Seq Com Com | If Expr Com Com
Prog = Do Com Ezpr

expr s kapr — Arr — Val

expr (Var i) a = lookup i a

expr (Const v) a = v

expr (Plus e; ¢;) @ = eapr ey a+ eapr ¢; a

com : Com — iArr — [Arr

com (Asgn i ¢) a = let! (a) v=capr ¢ a in update i v a

com (Seq ¢y ¢;) a com ¢; (com ¢; a)

com (If € ¢y ¢;) a

let! () v = expr € a in
if v =0 then com ¢; a else com ¢; a

prog . Prog — Val

prog (Do ¢ e) = dealloc (expr’ e (com ¢ alloc))
expr’ © kapr — iArr — Val @ iArr
expr’ € a = let! (a) v =eapr ¢ a in (v, a)

Figure 6: A simple interpreter, version 3

5.3 “Read only” arrays

If “read only” access is allowed, then the array operations are as follows:

alloc ©iArr,
lookup = Tx — Arr — Val,
update Iz — Val — iArr — iArr,

dealloc : Val @ iArr — Val.

The type iArr corresponds to write access, and the type Arr corresponds to read access.
The alloc, updale, and dealloc operations are just as in the previous section; while the
lookup operation is just as it was originally in the conventional type system.

A third version of the interpreter using “read only” access is shown in Figure 6. Here
the com semantic function has the same structure it had in version 2, while the expr
semantic function has the same structure it had in version 1. In particular, the spurious
imposition of an evaluation order on summands, present in version 2, has gone away.
Note that the type of expr vefers to Arr, not iArr, making it explicit that expr never
changes the array that it is passed.

One unusual feature of this simple semantics is that it does, in effect, discard the
store (the command is executed; the expression is evaluated in the resulting store; and
then the store is discarded and only the value of the expression is kept). Note that the
“no discard” rule does not mean that the store cannot be discarded, simply that the

18



store must be discarded explicitly. As a result, the definition of prog in the final program
(Figure 6) is more longwinded than the equivalent definition in the original (Figure 4).
Depending on your point of view, this difference may be regarded as a drawback or as
a benefit.

5.4 Arrays of arrays

Finally, we briefly consider how to handle arrays of arrays. Let iArr and Arr be as in
the previous section: arrays taking indexes of type Ix into values of type Val. Let iArr2
and Arr2 be arrays taking indexes of type [z into values of type iArr. The new feature
here is that the values of Arr2 are linear rather than nonlinear.

et the operations on the type Arr be as in the previous section. In addition, the
operations on Arr2 are:

alloc2 s iArr2

lookup?2 : Irx — Arr2 — Arr

update2 : Tv — (iArr = iAr) = (A2 = 1Am2
dealloc?2 : Val @ iArr2 — Val

To compute the value of a2[k][!] and store this in location a2]i][j] one writes:

let! (a2) v = lookup 1 (lookup?2 k a2) in
update? 1 (update j v) a2 .

6 Conclusions

Much further work remains to be done. Among the important questions are the follow-
ing:
e How do linear types fit in with the Hindley-Milner-Damas approach to polymor-
phism and type inference?

e How can linear types best support i/o and interactive functional programs?

e Girard’s Linear Logic contains nothing like the “let!” construct. Is there a nice
theoretical justification for this construct?

o Deforestation [Wad88] has a linearity constraint, and the “blazed” types described
there might be subsumed by “of course” types. Can linear types aid program
transformation?

Finally, more practical experience is required before we can evaluate the likelihood that
linear types will change the world.

Acknowledgements. For discussions relating to this work, and comments on it, I am
grateful to Steve Blott, Kei Davis, Séren Holmstrém, Paul Hudak, Simon Jones, Yves
Lafont, Simon Peyton Jones, David Schmidt, the Glasgow FP Group, and the members
of IFIP WG 2.8.

References

[Blo89]  A. Bloss, Path analysis: using order-of-evaluation information to optimize
lazy functional languages. Ph.D. thesis, Yale University, Department of Com-
puter Science, 1989.

[BHY89] A. Bloss, P. Hudak, and J. Young, An optimising compiler for a modern
functional language. Computer Journal, 32(2):152-161, April 1989.

[DB76]  J. Darlington and R. M. Burstall, A system which automatically improves
programs. Acta Informatica, 6:41 60, 1976.

[DM82] L. Damas and R. Milner, Principal type schemes for functional programs.
In Proceedings of the 9°th Annual Symposium on Principles of Programming
Languages, Albuquerque, N.M., January 1982.

(Gir72]  J.-Y. Girard, Interprétation functionelle et élimination des coupures dans
Uarithmétique d’ordre supérieure. Ph.D. thesis, Université Paris VII, 1972.

[Gir86]  J.-Y. Girard, The system [’ of variable types, fifteen years later. Theoretical
Computer Science, 45:159-192, 1986.

[(Gir87]  J.-Y. Girard, Linear logic. Theoretical Computer Science, 50:1-102, 1987.

[GLTR9] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types. Cambridge Univer-
sity Press, 1989.

[Hin69]  R. Hindley, The principal type scheme of an object in combinatory logic.

Trans. Am. Math. Soc., 146:29-60, December 1969.

[Hol88]  S. Holmstrom, A linear functional language. Draft paper, Chalmers University
of Technology, 1988.

[Hud86] P. Hudak, A semantic model of reference counting and its abstraction. In
Proceedings ACM Conference on Lisp and Functional Programming, August
1986.

[AGR9]  P. Hudak and J. Guzmén, Taming side effects with a single-threaded type
system. Draft paper, Yale University, December 1989.

[HWS88] P. Hudak and P. Wadler, editors, Report on the Functional Programming
Language Haskell. Technical Report YALEU/DCS/RR656. Yale University,
Department of Computer Science, December 1988; also Technical Report,
Glasgow University, Department of Computer Science, December 1988.

[Laf88] Y. Lafont, The linear abstract machine. Theoretical Computer Science,
59:157-180, 1988.

[Mil78]  R. Milner, A theory of type polymorphism in programming. J. Compul. Syst.
Sei., 17:348 375, 1978.

20



[Rey74]

[Rey83]

[Sch3]

[Tur85]

[Wad88]

J. C. Reynolds, Towards a theory of type structure. In B. Robinet, editor,
Proc. Collogue sur la Programmation, LNCS 19, Springer-Verlag.

J. C. Reynolds, Types, abstraction, and parametric polymorphism. In R.
E. A. Mason, editor, Information Processing 83, 513-523, North-Holland,
Amsterdam.

J. C. Reynolds. Three approaches to type structure. In Mathematical Foun-
dations of Software Development, LNCS 185, Springer-Verlag, 1985.

D. A. Schmidt, Denotational semantics as a programming language. Internal
report CSR-100, Computer Science Department, University of Edinburgh,
1982.

D. A. Schmidt, Detecting global variables in denotational specifications. ACM
Trans. on Programming Languages and Systems, 7:299 310, 1985. (Also In-
ternal Report CSR-143, Computer Science Department, University of Edin-
burgh, September 1983.)

. A. Turner, Miranda: A non-strict functional language with polymorphic
types. In Proceedings of the 2°nd International Conference on Functional Pro-
gramming Languages and Computer Architecture, Nancy, France, September
1985. LNCS 201, Springer-Verlag, 1985.

P. Wadler, Deforestation: transforming programs to eliminate trees. In Fuso-
pean Symposium on Programming, LNCS 300, Springer-Verlag, 1988.



