
Linear types can change the world!Philip WadlerUniversity of Glasgow�AbstractThe linear logic of J.-Y. Girard suggests a new type system for functionallanguages, one which supports operations that \change the world". Values be-longing to a linear type must be used exactly once: like the world, they cannot beduplicated or destroyed. Such values require no reference counting or garbage col-lection, and safely admit destructive array update. Linear types extend Schmidt'snotion of single threading; provide an alternative to Hudak and Bloss' updateanalysis; and o�er a practical complement to Lafont and Holmstr�om's elegantlinear languages.An old canard against functional languages is that they cannot change the world:they do not \naturally" cope with changes of state, such as altering a location in memory,changing a pixel on a display, or sensing when a key is pressed.As a prototypical example of this, consider the world as an array. An array (of typeArr) is a mapping from indices (of type Ix) to values (of type Val). For instance, theworld might be a mapping of variable names to values, or �le names to contents. Atany time, we can do one of two things to the world: �nd the value associated with anindex, or update an index to be associated with a new value.Of course it is possible to model this functionally; we just use the two operationslookup : Ix ! Arr ! Val ;update : Ix ! Val ! Arr ! Arr :A program that interacts with the world might have the formmain : Args ! Arr ! Arr ;where the �rst parameter is the list of arguments that make up the command line, thesecond parameter is the old world, and the result is the new world. An example of aprogram ismain �les a = update \stdout" (concat [lookup i a j i �les]) a:�Author's address: Department of Computing Science, University of Glasgow, G12 8QQ, Scotland.Electronic mail: wadler@cs.glasgow.ac.uk.Presented at IFIP TC 2 Working Conference on Programming Concepts and Methods, Sea of Galilee,Israel, April 1990; published in M. Broy and C. B. Jones, editors, Programming Concepts and Methods,North Holland, 1990. 1

This performs the same operation as \cat" in Unix: it writes to the �le \stdout" theresult of concatenating the contents of each �le named in the list �les. (The exampleuses a list comprehension notation familiar from languages such as Miranda1 [Tur85] orHaskell [HW88].)So the canard is indeed a lie. But it is not completely without basis, because thereis something unsatisfactory with this way of modelling the world. Namely, it allowsoperations that duplicate the world:copy a = (a; a);or that discard it: kill a = ():Neither of these correspond to our intuitive understanding of \the world": there is oneworld, which (although it may change) is neither duplicated nor discarded.This paper discusses the use of a linear type system, based on the linear logic of J.-Y.Girard [Gir87, GLT89]. Values belonging to a linear type must be used exactly once:like the world, they can be neither duplicated nor discarded.\No duplication" helps to guarantee e�cient implementation. For example, it guar-antees that it is safe to update an array destructively, by overwriting the given indexwith the given value. Similar e�ciencies can be achieved when updating a value thatcorresponds to a �le system. If a value is represented by a linked list, then knowing thatone holds the only pointer to the list may enable e�cient re-use of the list cells.\No discarding" is equally important. In most implementations of a functional lan-guage it is essential to recover space that is discarded by the use of reference countingor garbage collection. Values of a linear type avoid this overhead. As we shall see, thisdoesn't mean that one cannot release storage used by a linear value; rather, it meansthat both allocation and deallocation of linear values are explicitly indicated in theprogram text.Linear types enforce useful design constraints. Imagine a denotational semantics of aprogramming language. We would expect the store not to be duplicated or discarded|there would be something odd about a semantics that did either of these. Giving thestore a linear type guarantees these properties.Similarly, if the �le system is to be represented by a single value (along the lines out-lined above), then it is useful to give the �le system a linear type. Among other things,this would trap some errors that novice programmers might make, such as throwingaway the entire �le system. (An early proposal for Haskell I/O treated the �le systemas a value. It was rejected, in part, because no mechanism like linearity was available.)The system described here divides types into two families. Values of linear type haveexactly one reference to them, and so require no garbage collection. Values of nonlineartype may have many pointers to them, or none, and do require garbage collection.Pure linearity is, in fact, a stronger constraint than necessary. It is ok to havemore than one reference to a value, so long as the value is being \read"; only when thevalue is \written" (e.g., destructively updated) is it necessary to guarantee that a singlereference exists.1Miranda is a trademark of Research Software Limited.2

For example, the \cat" program given previously is not legal as it stands. It shouldbe written main �les a = let! (a)v = concat [lookup i a j i �les] inupdate \stdout" v :This allows multiple read accesses to the �le system (one for each �le in �les), all ofwhich may occur in parallel; but all of which must be completed before the \write"access (to \stdout").The language used in this paper is lazy. The one exception is the \let!" construct,which completely evaluates the term after the \=" before commencing evaluation of theterm after the \in". This sequencing is essential to guarantee that all reads of a structureare completed before it is updated. (In this example, it also has the unfortunate e�ectof removing the opportunity for lazy evaluation to cause reading the inputs and writingthe output to act as coroutines.)The name \single threading" was coined by Schmidt to describe the situation where thestore of a denotational semantics satis�es the \no duplication" property, and he gavesyntactic criteria for recognising when this occurs [Sch82, Sch85]. However, Schmidt'scriteria say nothing about the \no discarding" property, and are designed for use witha strict, rather than a lazy, language. Further, Schmidt allows only one single-threadedvalue (i.e., the store) while the linear type system allows any number (e.g., two di�erentdestructively updated arrays). Nonetheless, the linear type system was closely inspiredby Schmidt's work. In particular, the \let!" construct was added so that it would bestraightforward to transform any single-threaded semantics (well, any one that doesn'tdiscard its store) into an equivalent program with a linear store type.A great deal of work has gone into compile-time analysis to determine when de-structive updating is safe, notably by Bloss and Hudak [Blo89, BHY89, Hud86]; olderanalysis techniques for determining when list cells can be reused go back to Darlingtonand Burstall [DB76]. Analysis techniques have the advantage that destructive updatingcan be inferred whether the user indicates it explictly or not. With linear types, theuser must decide which types are linear, and explicitly use let! where it is appropriate.Conversely, linear types have the advantage that the types make the user's intentionmanifest. With analysis techniques, a small change to a program might (by fooling theanalysis) result in an unintended, large change in execution e�ciency whose cause isdi�cult to trace.The type system used in this paper is monomorphic. It is straightforward to extendit to a polymorphic language with explicit type applications, as in the Girard-Reynoldscalculus [Gir72, Gir86, Rey74, Rey83, Rey85]. However, it is not clear whether it can beextended to the more common Hindley-Milner-Damas inference system [Hin69, Mil78,DM82] used in languages such as Miranda and Haskell. This is one area for futureresearch.Other computer scientists have also been struck by the potential of a type system basedon Girard's linear logic.A very elegant linear language has been developed by Lafont [Laf88], and a variantof it by Holmstr�om [Hol88]. These systems have the amazing property that every valuehas exactly one reference to it, and so garbage collection is not required at all. Thisseems too good to be true, and perhaps it is: since there is never more than one pointer3

to a value, the results of computations cannot be shared. In fact, sharing is allowed (theso-called \of course" types) but shared values are dealt with in two ways, neither ofwhich is as e�cient as one would like:� The �rst way is to represent the shared value by a pointer to a closure. This ishow Lafont's system implements values of functional type, and how Holmstr�om'ssystem implements all values. Evaluating a closure does not cause the closure tobe overwritten. Hence, this implementation is more like call-by-name than call-by-need: any shared value will be recomputed each time it is used, which can bestaggeringly ine�cient.� The second way is to completely copy a shared value each time a reference to it iscopied. This is how Lafont's system implements values of base type, such as lists.This is much more e�cient than the �rst method, but it is still far less e�cientthan the usual conception of shared pointers.While marvelously elegent and worthy of study, these systems seem unsuited for practicaluse.The system described here is inspired in part by Lafont and Holmstr�om's work, butit di�ers in three ways:� Lafont and Holmstr�om use a single family of types, augmented with the \of course"type constructor. The system given here uses two completely distinct families oftypes, one linear and one nonlinear. This is less elegant, as it means most of thetyping rules appear in two versions, one for each family. But it means one has theadvantage of unique reference, for linear types, while retaining the e�ciency ofsharing, for nonlinear types. In particular, none of the e�ciency problems abovearise.� Lafont and Holmstr�om use syntaxes rather di�erent than that of the lambda cal-culus, and a non-trivial translation is required to transform lambda calculus termsinto terms in their languages. In contrast, the traditional lambda calculus is asubset of the language described here.� Lafont and Holmstr�om have no analogue of the \let!" construct, and hence donot support some useful ways of structuring programs. In particular, there is noobvious way to translate Schmidt's single-threaded programs into linear programsin the style of Lafont and Holmstr�om, but there is a straightforward translationinto the type system in this paper.Another type system, more loosely inspired by linear logic, has been developed byHudak and Guzm�an [HG89]. The two were developed concurrently and mostly inde-pendently, although the exact form of \let!" used here was partly inuenced by theirwork. The goals of their work are more ambitious, and as a result their type system is(perhaps) more complex. Further work is needed to understand the relation between thetwo systems. One clear di�erence is that their system guarantees the \no duplication"property, but not the \no discarding" property; hence in their system deallocation oflinear values is not always explicit.The remainder of this paper is organised as follows. Section 1 describes a conventionaltyped language. Section 2 modi�es this language for linear types, and Section 3 adds4

back in nonlinear types. Section 4 introduces the \let!" construct. Section 5 presentsan extended example involving arrays, showing how to implement an interpreter for asimple imperative language. Section 6 concludes.1 Conventional typesThis section presents the de�nition of a conventional typed lambda calculus, that is,one without linear types. The de�nition will be adapted to linear types in the followingsections.The only novel feature of the calculus in this section is an unusual form of datatype declaration. That is, it is unusual for theorists; in practice, a quite similar form ofdeclaration is used in languages such as Miranda and Haskell.Assume there is a �xed set of base type declarations. Each declaration takes theform K = C1 T11 : : : T1k1 j � � � j Cn Tn1 : : : Tnkn ;where K is a new base type name, the Ci are new constructor names, and the Tij aretypes (called the immediate components of K). For example, here are declarations forbooleans and lists of Val , where Val is another base type:Bool = True j False ;List = Nil j Cons Val List :The immediate components of List are Val and List .A type is a base type or a function type:T ::= Kj (U ! V) :Here K ranges over base types and T ;U ;V range over types.A term is variable, abstraction, application, constructor term, case term, or �xpoint:t ::= xj (�x : U : v)j (t u)j (C t1 : : : tk)j (case u of C1 x11 : : : x1k1 ! v1 j � � � j Cn xn1 : : : xnkn ! vn)j (�x t) :Here x ranges over variables and t ; u; v range over terms. Following convention, paren-theses may be dropped in (T ! (U ! V)) and ((t u) v).Let A;B range over assumption lists. An assumption list associates variables withtypes: A ::= x1 : T1 ; : : : ; xn : Tn :Write x =2 A to indicate that x is not one of the variables in A.A typing is an assertion of the form A ` t : T . This asserts that if the assumptionsin A are satis�ed (that is, xi has type Ti for each xi : Ti in A) then t has type T . Thetype system possesses unicity of type: for a given A and t there is at most one T suchthat A ` t : T . 5

Typings are derived using the rules shown in Figure 1. As usual, these rules takethe form of a number of hypotheses (above the line) and a conclusion (below the line)that can be drawn if all the hypotheses are satis�ed. The rules concerning base typesinclude an additional hypothesis displaying the declaration of the type, shown in a boxabove the rule. The rules come in pairs: the !I rule introduces a function (by alambda expression), and the !E rule eliminates a function (by applying it); the KIrule introduces a value of a base type (by constructing it), and the KE rule eliminates avalue of a base type (by a case analysis). There are also rules for variables and �xpoints(var and fix).As an example, here is a function two append two lists, written out in painful detail:�x (�append : List ! List ! List :�xs : List : �ys : List :case xs ofNil ! ysCons x 0 xs 0 ! Cons x 0 (append xs 0 ys)) :This term is well-typed, with type List ! List ! List .2 Linear typesIn the conventional type system just described, each occurrence of a variable in anassumption list, x : T , can be read as permission to use the variable x at type T .Furthermore, it can be used any number of times: zero, one, or many. Hencex : Arr ` () : Unitis a valid typing, even though the assumption x : Arr is used zero times. Similarly,x : Arr ` (x ; x) : Arr �Arris also valid, even though the assumption x : Arr is used twice.The key idea in a linear type system is that each assumption must be used exactlyonce. Thus both of the above typings become illegal. As a �rst approximation, ifA ` t : T is a valid typing in a linear type system, then each variable in A appearsexactly once in t .Linear types are written di�erently from conventional types. Base types are written<K , and function types are written U �� V . (In linear logic, by default an assumptionT must be used exactly once; if an assumption is to be discarded or duplicated it mustbe written !T . The symbol for linear types types was chosen to reect this.)Thus, the new grammar of types is:T ::= <Kj (U ��V) :The grammar of terms is changed similarly:t ::= xj (<�x : U : v)j (<t u)j (<C t1 : : : tk)j (case u of <C1 x11 : : : x1k1 ! v1 j � � � j <Cn xn1 : : : xnkn ! vn) :6

var A; x : T ` x : T!I A; x : U ` v : VA ` (�x : U : v) : U ! V x =2 A!E A ` t : U ! V A ` u : UA ` (t u) : VK = � � � j C T1 : : : Tk j � � �KI A ` t1 : T1� � �A ` tk : TkA ` (C t1 : : : tk) : KK = C1 T11 : : : T1k1 j � � � j Cn Tn1 : : : TnknKE A ` u : KA; x11 : T11 ; : : : ; x1k1 : T1k1 ` v1 : V� � �A; xn1 : Tn1 ; : : : ; xnkn : Tnkn ` vn : VA ` (case u of C1 x11 : : : x1k1 ! v1 j � � � j Cn xn1 : : : xnkn ! vn) : V xij =2 Afix A ` t : T ! TA ` (�x t) : TFigure 1: Conventional typing rules7

var x : T ` x : T��I A; x : U ` v : VA ` (<�x : U : v) : U �� V x =2 A��E A ` t : U �� V B ` u : UA;B ` (<t u) : V<K = � � � j <C T1 : : : Tk j � � �<KI A1 ` t1 : T1� � �Ak ` tk : TkA1 ; : : : ; Ak ` (<C t1 : : : tk) : K<K = <C1 T11 : : : T1k1 j � � � j <Cn Tn1 : : : Tnkn<KE A ` u : KB ; x11 : T11 ; : : : ; x1k1 : T1k1 ` v1 : V� � �B ; xn1 : Tn1 ; : : : ; xnkn : Tnkn ` vn : VA;B ` (case u of <C1 x11 : : : x1k1 ! v1 j � � � j <Cn xn1 : : : xnkn ! vn) : V xij =2 BFigure 2: Rules for linear typesThere are no �xpoints in the linear language. A linear value should be accessedexactly once, but �x t is equivalent to t (t (t � � �)).Each of the typing rules must now be modi�ed accordingly. The new rules aresummarised in Figure 2.Consider the old var rule:var A; x : T ` x : T :Any assumption in the list A is unused in the typing, and hence this is no longer legal.The new rule is: var x : T ` x : T :Here the single assumption on the left is used exactly once on the right.8

Next, consider the old !E rule:!E A ` t : U ! V A ` u : UA ` (t u) : V :Any variable that appears in A may appear in both t and u, and this should be prohib-ited. The new rule is: ��E A ` t : U �� V B ` u : UA;B ` (<t u) : V :Here both A and B range over assumption lists, and A;B stands for the conjunction ofthe two lists. It is easy to see that if each variable in A occurs exactly once in t , and ifeach variable in B occurs exactly once in u, then each variable in A;B occurs exactlyonce in t u.The <KI rule is modi�ed to refer to k assumption lists, A1 ; : : : ;Ak . On the otherhand, the <KE rule is modi�ed to refer to only two assumption lists, A and B . Thesame assumption list B is used for each of the branches of the case; this is sensiblebecause exactly one branch will be executed. This, incidentally, is why the claim thateach variable appears exactly once is only approximate; in a case term a variable mayappear exactly once in each branch.We can de�ne some familiar combinators by writing IX , BXYZ , and CXYZ as abbre-viations for IX = <�x : X : xBXYZ = <�f : Y �� Z : <�g : X �� Y : <�x : X : <f (<g x)CXYZ = <�f : X �� Y �� Z : <�y : Y : <�x : X : <(<f x) y)yielding the well-typings` IX : X �� X` BXYZ : (Y �� Z)�� (X �� Y)�� X �� Z` CXYZ : (X �� Y �� Z)�� (Y �� X �� Z) :On the other hand, if we de�neKXY = <�x : X : <�y : Y : xSXYZ = <�f : X �� Y �� Z : <�g : X �� Y : <�x : X : <(<f x) (<g x)then KXY and SXYZ have no well-typings in the linear system; K because it discards y,and S because duplicates x . More generally, any term that translates into a combinationof the I, B, and C combinators is well-typed in this system, while any term requiring Kor S for its translation is not.In the linear system, each operation that introduces (and allocates) a value is pairedwith exactly one operation that eliminates (and deallocates) that value. The introduc-tion operations (abstraction and construction) create values to which a single referenceexists. This reference may never be duplicated or discarded, so the elimination opera-tions (application and case) act on values to which they hold the sole reference. Hence,after an application the storage occupied by the function may be reclaimed, and after acase analysis the storage occupied by the node analysed may be reclaimed. No referencecounting or garbage collection is required. 9

This e�ciency is achieved by restricting the language severely: each variable that isbound must be used exactly once. This is perfect for variables corresponding to, say,a �le system or a large array; but it is not reasonable to impose such a restriction ona variable containing, say, an integer. Thus, the type system needs to distinguish twosorts of values: those that may not be duplicated or discarded, and those that may.This extension is the subject of the next section.3 Nonlinear typesThe linear language of the previous section is wonderfully e�cient, but woefully lackingin expressiveness. To recover the power of a sensible programming language, we rein-troduce the types K and U ! V . This yields a language with two families of types:linear types, <K and U �� V , and nonlinear types, K and U ! V . Values of lineartypes may not be duplicated or discarded; values of nonlinear types may.If T is a linear type, then an assumption of the form x : T is a permission, and arequirement, to use the variable x exactly once. It is a restrictive assumption. May Idiscard x? <No! May I duplicate x? <No!If T is a nonlinear type, then an assumption of the form x : T is a permission to usex zero, one, or many times. It is a generous assumption. May I discard x? Of course!May I duplicate x? Of course!(Similarly, in linear logic an assumption may not be discarded or duplicated unlessit is of the form !T . The ! is pronounced \of course". But be warned: the formulaU ! V = (!U)��V that holds in linear logic is not appropriate to this paper; a betterguide would be U ! V = !(U �� V).)There are now two forms of base type declaration, linear and nonlinear:<K = <C1 T11 : : : T1k1 j � � � j <Cn Tn1 : : : Tnkn ;K = C1 T11 : : : T1k1 j � � � j Cn Tn1 : : : Tnkn :In the former, the immediate components may be any types, while in the latter casethey must be nonlinear. In other words, a nonlinear data structure must not containany linear components. Thus,<List = <Nil j <Cons <Val <List ;<List = <Nil j <Cons Val <List ; andList = Nil j Cons Val Listare all ok, but List = Nil j Cons <Val Listis not ok.This restriction is easy to understand. A value of linear type must be accessed exactlyonce. Say that a value of nonlinear type contained a pointer to it. If the nonlinear valuewas duplicated, the linear value would be accessed once for each duplication; it wouldbe virtually duplicated. If the nonlinear value was discarded, the linear value wouldnever be accessed; it would be virtually discarded. Hence, no nonlinear value may pointto a linear value. 10

For example, the following fragment should be well-typed if xs has type List :case xs of � � � j Cons x 0 xs 0 !case xs of � � � j Cons x 00 xs 00 !: : : x 0 : : : x 00 : : :Under the illegal declaration of List above, both x 0 and x 00 would have the linear type<Val , even though they are both bound to the same value. Any operation that tookadvantage of the linear type of x 0 (to reuse its storage, or to update it destructively)would create a \side e�ect" on x 00. So much for referential transparency!Fortunately, the linear type system disallows this. With the legal declaration of thetype List , both x 0 and x 00 have the nonlinear type Val , and there is no problem. On theother hand, if xs has the linear type <List , then the fragment would be illegal becauseit uses xs twice.The grammar of types is now T ::= <Kj Kj (U ��V)j (U ! V) :Each type is deemed linear or nonlinear, depending on its topmost constructor. Hence(T �� (U ! V)) is linear, while (T ! (U �� V)) is nonlinear.The grammar of terms is similarly extended. To all of the term formers in Section 2are added all of the term formers in Section 1. Thus (<�x : U : v) is a term of typeU ��V , and (�x : U : v) is a term of type U ! V . The typing rules consist of all thosein Figure 2 together with the additional rules in Figure 3.Mathematically, the notion that values of a nonlinear type may be discarded orduplicated is represented by the rules:kill A ` u : UA; x : T ` u : U nonlinear T ,copy A; x : T ; x : T ` u : UA; x : T ` u : U nonlinear T .The kill rule allows a value of type T to be discarded, while the copy rule allowsa value of type T to be duplicated, so long as T is a nonlinear type. To formulatethe copy rule neatly, assumptions of the form x : T are allowed to appear possiblymultiple times in an assumption list when T is a nonlinear type; thus assumption listsare multisets rather than sets. Note that the var rule of Figure 2 applies to both linearand nonlinear types.The nonlinear version of the function introduction rule is:!I A; x : U ` v : VA ` (�x : U : v) : U ! V x =2 A, nonlinear A.This is identical to the old rule, except for the addition of a side condition requiring thatthe assumption list A be nonlinear. An assumption list is nonlinear if each assumption11

kill A ` u : UA; x : T ` u : U nonlinear Tcopy A; x : T ; x : T ` u : UA; x : T ` u : U nonlinear T!I A; x : U ` v : VA ` (�x : U : v) : U ! V x =2 A, nonlinear A!E A ` t : U ! V B ` u : UA;B ` (t u) : VK = � � � j C T1 : : : Tk j � � �, nonlinear TiKI A1 ` t1 : T1� � �Ak ` tk : TkA1 ; : : : ; Ak ` (C t1 : : : tk) : KK = C1 T11 : : : T1k1 j � � � j Cn Tn1 : : : Tnkn , nonlinear TijKE A ` u : KB ; x11 : T11 ; : : : ; x1k1 : T1k1 ` v1 : V� � �B ; xn1 : Tn1 ; : : : ; xnkn : Tnkn ` vn : VA;B ` (case u of C1 x11 : : : x1k1 ! v1 j � � � j Cn xn1 : : : xnkn ! vn) : V xij =2 Bfix A ` t : T ! TA ` (�x t) : TFigure 3: Rules for nonlinear types12

xi : Ti in it has a nonlinear Ti . No condition is placed on U or V by this rule; theymay be either linear or nonlinear.This restriction follows from the principle, established above, that a nonlinear valuemust not contain pointers to linear values. A function value is a closure that contains apointer to an environment binding each variable in A. Hence a nonlinear function canonly be introduced in an environment A that contains only nonlinear types.For example, if <X is a linear type and Y is nonlinear, then(�x : <X : �y : Y : x) : <X ! Y ! <Xis not a well-typing. (It is an easy exercise to show that if it were well-typed then anylinear value could be duplicated.) On the other hand, both of` (�x : <X : <�y : Y : x) : <X ! Y �� <X ;` (�y : Y : �x : <X : x) : Y ! <X ! <Xare ok, the �rst because ��I places no constraint on the assumption list, and the secondbecause !I places no constraint on the argument or result type.Returning to a previous example, here is another version of the append function:�x (�append : <List �� <List �� <List:�xs : <List : �ys : <List :case xs of<Nil ! ys<Cons x 0 xs 0 ! <Cons x 0 (<(<append xs 0) ys)) :This is well-typed under either declaration for <List given above. Since both argumentsare linear, if the �rst argument is a <Cons cell then this cell may be deallocated imme-diately. It requires only a modestly good compiler to notice that the best thing to dowith this cell is not to return it to free storage, but to reuse it in building the result.An only moderately better compiler would notice that the head of this cell may be leftunchanged. Only the tail of the cell needs to be �lled in with the result of the recursivecall to append . In fact, that recursive call will almost always return the same value thatis there already (the exception being when it is <Nil), and a little loop unrolling couldresult in a very e�cient version of append indeed|but it might require a less modestlygood compiler writer to notice that.4 Read-only accessIn order for destructive updating of a value to be safe, it is essential that there be onlyone reference to the value when the update occurs. In the linear type system, this isenforced by guaranteeing that there is always exactly one reference to the value. Thisrestriction is stronger than necessary. It is perfectly safe to have more than one referenceto a value temporarily, as long as only one reference exists when the update is performed.The situation here is similar to the well-known \readers and writers" problem, whereaccess to a resource is to be controlled. Many processes may simultaneously have readaccess, but a process may have write access only if no other process has access (eitherread or write) to the resource. 13

The two sorts of access are modelled using two types. A linear type corresponds towrite access, and a nonlinear type corresponds to read access: permission to write mustbe unique, but permission to read may be freely duplicated.A new form of term is introduced for granting read-only access:let! (x) y = u in v :This is evaluated similarly to a conventional let term: �rst u is evaluated, then y isbound to the result, then v is evaluated in the extended environment. But there arethree di�erences from a garden-variety let.The �rst is that within u the variable x has nonlinear type, while within v thevariable x has linear type. That is, during evaluation of u, read-only access is allowedto the value in x .The second is that evaluation of u must be carried out completely before evaluationof v commences|this is sometimes called hyperstrict evaluation. For instance, if ureturns a list, then all elements of this list must be evaluated. This is required in orderto guarantee that all references to x within u are freed before evaluation of v commences.The third is that there are some constraints on the type of x and u. It must notbe possible for u (or any component of u) to be equal to x (or any component of x)|otherwise, read access to x (or a component of x) could be passed outside the scope ofu. This condition is made precise below.De�ne the components of a type to be itself and, if it is a base type, all compo-nents of its immediate components. We will restrict our attention to the case where allcomponents of the type of x are base types.Given a type T , the corresponding nonlinear type !T is derived from it as follows.If <K is a linear base type de�ned by<K = <C1 T11 : : : T1k1 j � � � j <Cn Tn1 : : : Tnkn ;then ! <K is the nonlinear base type K de�ned byK = C1 !T11 : : : !T1k1 j � � � j Cn !Tn1 : : : !Tnkn ;where the components of K are recursively converted. If K is a nonlinear base type,then !K is identical to K .Let T be the type of x , and U be the type of u. We must ensure that u cannot\smuggle out" any component of x that is linear. This is guaranteed if no linear com-ponent of T has a corresponding nonlinear component in U , and if no component ofU is a function type. (Functions are disallowed since a function term may have x or acomponent of x as a free variable.) If this holds, say that U is safe for T .Finally, the required typing rule is:let! A; x : !T ` u : UB ; x : T ; y : U ` v : VA;B ; x : T ` (let! (x) y = u in v) : V U safe for T .An example of the use of let! appears in the next section.It is easy to allow read-only access to several variables at once; simply takelet! (x1 ; x2 ; : : : ; xm) y = u in vas an abbreviation forlet! (x1) y = (let! (x2 ; : : : ; xm) y 0 = u in y 0) in v :14

5 Arrays5.1 Conventional arraysBefore considering how to add arrays to a linear type system, let's review the use ofarrays in the conventional type system.An array associates indices with values. We will �x the index and value types, andwrite Arr for the type of arrays with indices of type Ix and values of type Val . Thereare three operations of interest on arrays:alloc : Arr ;lookup : Ix ! Arr ! Val ;update : Ix ! Val ! Arr ! Arr :Here alloc allocates a new array (with all entries set to some �xed initial value);lookup i a returns the value at index i in array a; and update i v a returns an ar-ray identical to a except that index i is associated with value v . (In practice, the arraytype may be parameterised on the index and value types, and the new array functionmay take additional arguments to determine index bounds and initial values; but thesimpler version su�ces to demonstrate the central ideas.)This section will use the small interpreter shown in Figure 4 as a running example.This is written in an equational notation familiar from languages such as Miranda andHaskell; it is easy to translate the equations into lambda and case terms.The interpreter can be read as a denotational semantics for a simple imperativelanguage. Variable names are identi�ed with type Ix , the values stored in variables areidenti�ed with type Val , and stores (which map variable names to values) are identi�edwith type Arr .Three data types correspond to the abstract syntax of expressions, commands, andprograms.� An expression is a variable, a constant, or the sum of two expressions. The se-mantic function corresponding to an expression takes an array into a value.� A command is an assignment, a sequence of two commands, or a conditional. Thesemantic function corresponding to a command takes an array into an array.� A program consists of a command followed by an expression. The semanticscorresponding to a program is a value.The interpreter satis�es Schmidt's single-threading criteria. Thus, it is safe to im-plement the update operation in a way that re-uses the store allocated for the array.(This is to be expected, since the array represents the store of an imperative language.)However, how is the implementation to determine when it is safe to implement update inthis way? Succeeding sections will show how linear types can be used for this purpose.5.2 Linear arraysNow that the framework of the linear type system is in place, adding primitives forarrays is relatively straightforward. This section will show how to add arrays when15

Expr = Var Ix j Const Val j Plus Expr ExprCom = Asgn Ix Expr j Seq Com Com j If Expr Com ComProg = Do Com Exprexpr : Expr ! Arr ! Valexpr (Var i) a = lookup i aexpr (Const v) a = vexpr (Plus e0 e1) a = expr e0 a + expr e1 acom : Com ! Arr ! Arrcom (Asgn i e) a = update i (expr e a) acom (Seq c0 c1) a = com c1 (com c0 a)com (If e c0 c1) a = if expr e a = 0 then com c0 a else com c1 aprog : Prog ! Valprog (Do c e) = expr e (com c alloc)Figure 4: A simple interpreter\read only" access is not used. This leads to a small problem, which will be resolved bythe use of \read only" access in the next section.As before, an array type maps indices into values. The array type is linear, andso is written <Arr . For the simplest version of arrays, the index and value types arenonlinear, and so are written Ix and Val .We will require a data type that pairs a Val with a <Arr . This may be declared by<ValArr = <MkPair Val <Arr;but for readability we will write Val
 <Arr instead of <ValArr , and (v ; a) instead of<MkPair v a, and let (v ; a) = t in u instead of case t of <MkPair v a ! u.The four operations on linear arrays are:alloc : <Arr ;lookup : Ix ! <Arr ! Val
 <Arr;update : Ix ! Val ! <Arr ! <Arr ;dealloc : Val
 <Arr ! Val :The alloc and update operations are as before. The new lookup operation, being passedthe sole reference to an array, must return a reference to the same array when it com-pletes. Otherwise, since arrays cannot be duplicated, an array could only be indexedonce, and then would be lost forever! The linear type discipline requires that values ofa linear type be explicitly deallocated, and this is the purpose of the dealloc operation.The meaning of these operations can be explained in terms of the old operations as16

Expr = Var Ix j Const Val j Plus Expr ExprCom = Asgn Ix Expr j Seq Com Com j If Expr Com ComProg = Do Com Exprexpr : Expr ! <Arr ! Val
 <Arrexpr (Var i) a = lookup i aexpr (Const v) a = (v ; a)expr (Plus e0 e1) a = let (v0 ; a0) = expr e0 a inlet (v1 ; a1) = expr e1 a0 in(v0 + v1 ; a1)com : Com ! <Arr ! <Arrcom (Asgn i e) a = let (v ; a 0) = expr e a in update i v a 0com (Seq c0 c1) a = com c1 (com c0 a)com (If e c0 c1) a = let (v ; a 0) = expr e a inif v = 0 then com c0 a 0 else com c1 a 0prog : Prog ! Valprog (Do c e) = dealloc (expr e (com c alloc))Figure 5: A simple interpreter, version 2follows: alloc = allocold ;lookup i a = (lookupold a i ; a);update i v a = updateold i v a;dealloc x = let (v ; a) = x in v :However, we could not write this program to de�ne the new operations; they must bede�ned as primitives. (The de�nition of lookup is illegal because although a is linearit appears twice on the right-hand side; and the de�nition of dealloc is illegal becausealthough a is linear it appears no times on the right-hand side.)A new version of the interpreter using the linear array operations is shown in Figure 5.Unfortunately, this second version is a little more elaborate than the �rst, because eachapplication of lookup (and, hence, also each application of expr) requires additionalplumbing to pass around the unchanged array. This is particularly unfortunate in thePlus case of the de�nition of expr . It should be possible to evaluate the two summands,e0 and e1 , in parallel, but it is necessary here to specify some order, in this case e0before e1 .The linear type system is \too linear" in that it forces a linear order to be speci�edfor operations (like Plus in expr) that should not require it. The next section showshow \read only" access can solve this problem.17

Expr = Var Ix j Const Val j Plus Expr ExprCom = Asgn Ix Expr j Seq Com Com j If Expr Com ComProg = Do Com Exprexpr : Expr ! Arr ! Valexpr (Var i) a = lookup i aexpr (Const v) a = vexpr (Plus e0 e1) a = expr e0 a + expr e1 acom : Com ! <Arr ! <Arrcom (Asgn i e) a = let! (a) v = expr e a in update i v acom (Seq c0 c1) a = com c1 (com c0 a)com (If e c0 c1) a = let! (a) v = expr e a inif v = 0 then com c0 a else com c1 aprog : Prog ! Valprog (Do c e) = dealloc (expr 0 e (com c alloc))expr 0 : Expr ! <Arr ! Val
 <Arrexpr 0 e a = let! (a) v = expr e a in (v ; a)Figure 6: A simple interpreter, version 35.3 \Read only" arraysIf \read only" access is allowed, then the array operations are as follows:alloc : <Arr ;lookup : Ix ! Arr ! Val ;update : Ix ! Val ! <Arr ! <Arr ;dealloc : Val
 <Arr ! Val :The type <Arr corresponds to write access, and the type Arr corresponds to read access.The alloc, update, and dealloc operations are just as in the previous section; while thelookup operation is just as it was originally in the conventional type system.A third version of the interpreter using \read only" access is shown in Figure 6. Herethe com semantic function has the same structure it had in version 2, while the exprsemantic function has the same structure it had in version 1. In particular, the spuriousimposition of an evaluation order on summands, present in version 2, has gone away.Note that the type of expr refers to Arr , not <Arr , making it explicit that expr neverchanges the array that it is passed.One unusual feature of this simple semantics is that it does, in e�ect, discard thestore (the command is executed; the expression is evaluated in the resulting store; andthen the store is discarded and only the value of the expression is kept). Note that the\no discard" rule does not mean that the store cannot be discarded, simply that the18

store must be discarded explicitly. As a result, the de�nition of prog in the �nal program(Figure 6) is more longwinded than the equivalent de�nition in the original (Figure 4).Depending on your point of view, this di�erence may be regarded as a drawback or asa bene�t.5.4 Arrays of arraysFinally, we briey consider how to handle arrays of arrays. Let <Arr and Arr be as inthe previous section: arrays taking indexes of type Ix into values of type Val . Let <Arr2and Arr2 be arrays taking indexes of type Ix into values of type <Arr . The new featurehere is that the values of Arr2 are linear rather than nonlinear.Let the operations on the type Arr be as in the previous section. In addition, theoperations on Arr2 are:alloc2 : <Arr2lookup2 : Ix ! Arr2 ! Arrupdate2 : Ix ! (<Arr ! <Arr)! <Arr2 ! <Arr2dealloc2 : Val
 <Arr2 ! ValTo compute the value of a2 [k][l] and store this in location a2 [i][j] one writes:let! (a2) v = lookup l (lookup2 k a2) inupdate2 i (update j v) a2 :6 ConclusionsMuch further work remains to be done. Among the important questions are the follow-ing:� How do linear types �t in with the Hindley-Milner-Damas approach to polymor-phism and type inference?� How can linear types best support i/o and interactive functional programs?� Girard's Linear Logic contains nothing like the \let!" construct. Is there a nicetheoretical justi�cation for this construct?� Deforestation [Wad88] has a linearity constraint, and the \blazed" types describedthere might be subsumed by \of course" types. Can linear types aid programtransformation?Finally, more practical experience is required before we can evaluate the likelihood thatlinear types will change the world.Acknowledgements. For discussions relating to this work, and comments on it, I amgrateful to Steve Blott, Kei Davis, S�oren Holmstr�om, Paul Hudak, Simon Jones, YvesLafont, Simon Peyton Jones, David Schmidt, the Glasgow FP Group, and the membersof IFIP WG 2.8. 19

References[Blo89] A. Bloss, Path analysis: using order-of-evaluation information to optimizelazy functional languages. Ph.D. thesis, Yale University, Department of Com-puter Science, 1989.[BHY89] A. Bloss, P. Hudak, and J. Young, An optimising compiler for a modernfunctional language. Computer Journal, 32(2):152{161, April 1989.[DB76] J. Darlington and R. M. Burstall, A system which automatically improvesprograms. Acta Informatica, 6:41{60, 1976.[DM82] L. Damas and R. Milner, Principal type schemes for functional programs.In Proceedings of the 9'th Annual Symposium on Principles of ProgrammingLanguages, Albuquerque, N.M., January 1982.[Gir72] J.-Y. Girard, Interpr�etation functionelle et �elimination des coupures dansl'arithm�etique d'ordre sup�erieure. Ph.D. thesis, Universit�e Paris VII, 1972.[Gir86] J.-Y. Girard, The system F of variable types, �fteen years later. TheoreticalComputer Science, 45:159{192, 1986.[Gir87] J.-Y. Girard, Linear logic. Theoretical Computer Science, 50:1{102, 1987.[GLT89] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types. Cambridge Univer-sity Press, 1989.[Hin69] R. Hindley, The principal type scheme of an object in combinatory logic.Trans. Am. Math. Soc., 146:29{60, December 1969.[Hol88] S. Holmstr�om,A linear functional language. Draft paper, Chalmers Universityof Technology, 1988.[Hud86] P. Hudak, A semantic model of reference counting and its abstraction. InProceedings ACM Conference on Lisp and Functional Programming, August1986.[HG89] P. Hudak and J. Guzm�an, Taming side e�ects with a single-threaded typesystem. Draft paper, Yale University, December 1989.[HW88] P. Hudak and P. Wadler, editors, Report on the Functional ProgrammingLanguage Haskell. Technical Report YALEU/DCS/RR656, Yale University,Department of Computer Science, December 1988; also Technical Report,Glasgow University, Department of Computer Science, December 1988.[Laf88] Y. Lafont, The linear abstract machine. Theoretical Computer Science,59:157{180, 1988.[Mil78] R. Milner, A theory of type polymorphism in programming. J. Comput. Syst.Sci., 17:348{375, 1978. 20

[Rey74] J. C. Reynolds, Towards a theory of type structure. In B. Robinet, editor,Proc. Colloque sur la Programmation, LNCS 19, Springer-Verlag.[Rey83] J. C. Reynolds, Types, abstraction, and parametric polymorphism. In R.E. A. Mason, editor, Information Processing 83, 513{523, North-Holland,Amsterdam.[Rey85] J. C. Reynolds, Three approaches to type structure. In Mathematical Foun-dations of Software Development, LNCS 185, Springer-Verlag, 1985.[Sch82] D. A. Schmidt, Denotational semantics as a programming language. Internalreport CSR-100, Computer Science Department, University of Edinburgh,1982.[Sch85] D. A. Schmidt, Detecting global variables in denotational speci�cations. ACMTrans. on Programming Languages and Systems, 7:299{310, 1985. (Also In-ternal Report CSR-143, Computer Science Department, University of Edin-burgh, September 1983.)[Tur85] D. A. Turner, Miranda: A non-strict functional language with polymorphictypes. In Proceedings of the 2'nd International Conference on Functional Pro-gramming Languages and Computer Architecture, Nancy, France, September1985. LNCS 201, Springer-Verlag, 1985.[Wad88] P. Wadler, Deforestation: transforming programs to eliminate trees. In Euro-pean Symposium on Programming, LNCS 300, Springer-Verlag, 1988.
21

